
Precipitous Painless Paraplegia: an Atypical Vascular Etiology for a Stroke Code

Andrew Bellino MD¹, Nina Chicharoen MD²

1. Stanford University Emergency Medicine Residency 2. Kaiser Permanente Santa Clara Medical Center Emergency Department

INTRODUCTION:

In Emergency Medicine we are becoming increasingly aware of the cognitive pitfalls that plague our specialty as a result of our duty to

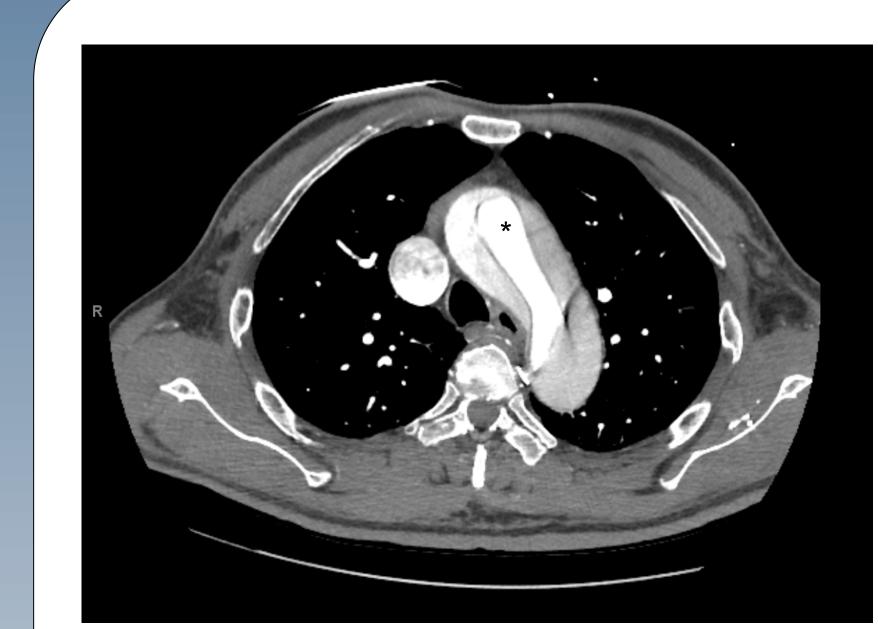


Figure D. CTA axial slice through the aortic arch showing Stanford

Type A aortic dissection with true

lumen (asterisk) and thrombus

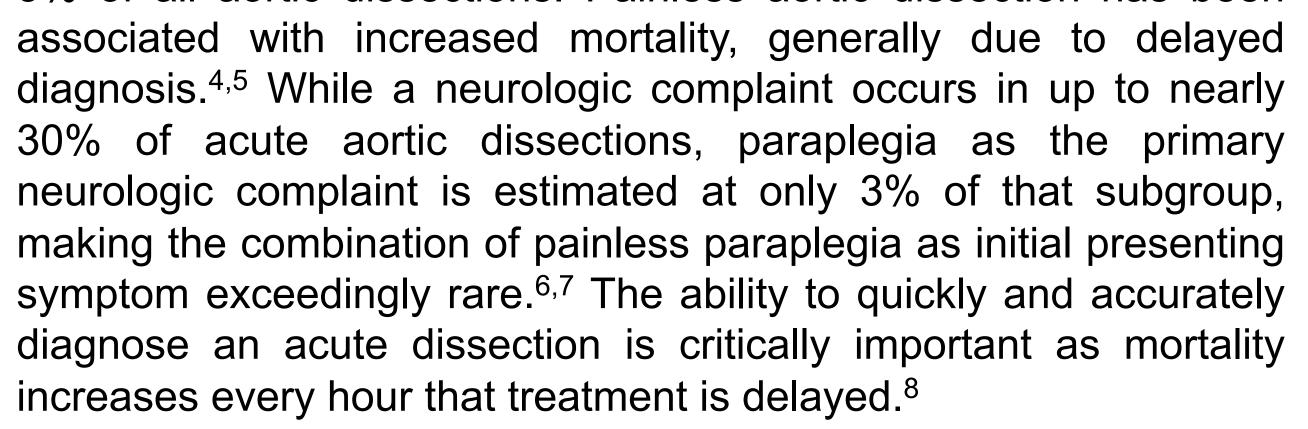
within the false lumen

CASE DISCUSSION:

Aortic dissection is a rare diagnosis with incidence estimated at 5-30 cases per million people per year.³ Of those cases, painless aortic dissection is only a small fraction occurring in an estimated 5% of all aortic dissections. Painless aortic dissection has been

make critical decisions with limited information.¹ While pre-hospital triage systems and expedited protocols for time sensitive diseases such as stroke, STEMI, and trauma have been instrumental in helping patients receive the urgent care they need, they can also lead to diagnostic error because of cognitive biases such as triage cueing or anchoring.² As we will see in this case, careful consideration of other differentials and use of point of care ultrasound can help emergency providers correctly diagnose illness when time is essential.

Common Types of Cognitive Bias Present in our Case. Adapted from Croskerry et al.²


Type of Cognitive Bias	Description	Ways to Avoid
Anchoring	The tendency to fixate on certain features too early in the diagnostic process; premature closure	If possible, delay forming an impression until complete information has been obtained
Triage cueing	An initial, abbreviated assessment dictates all future care and decisions made for a patient	Be aware of the risks of mis-triage; be willing to redirect care to a more appropriate setting
Availability/non- availability	Things that are more frequent are thought of first, while uncommon diagnoses (zebras) are not considered	Combine objective information about the prevalence of a disease with the clinical evidence

CASE DESCRIPTION:

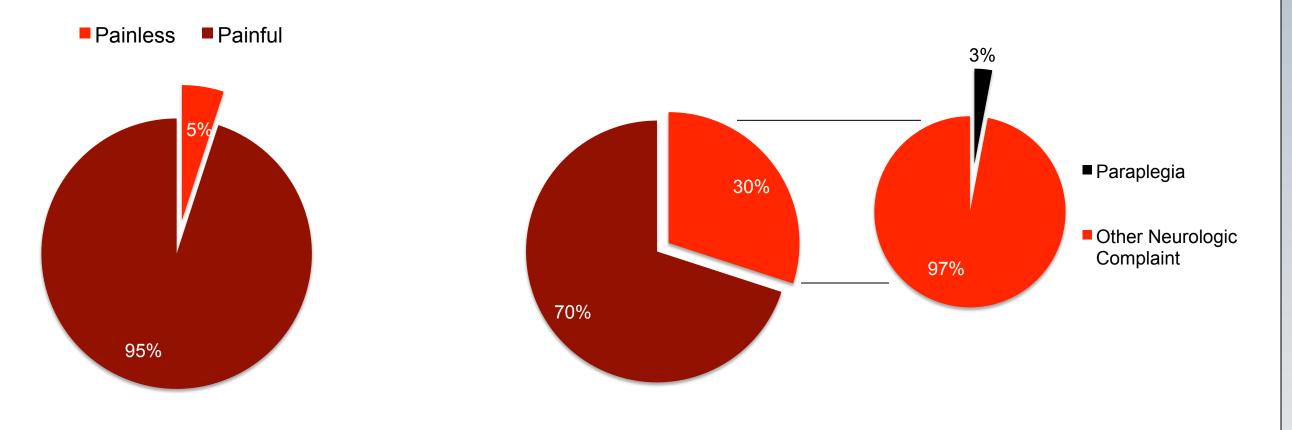

A 65 year old male with a history of hypertension called 911 for acute onset of weakness in both of his legs. He was seated at work when he suddenly fell onto the ground and began telling coworkers that his legs felt "sour." Patient denied any back, chest, or abdominal pain. He had true lower extremity weakness so was activated as a stroke alert by paramedics. He was met in the ambulance bay for evaluation where exam was notable for complete paraplegia with sensory deficit below the waistline and absent rectal tone.

Figure E. CTA axial slice at the level of the pulmonary arteries showing a small true lumen in the ascending as well as descending thoracic aorta (asterisks)

Aortic Dissection: Presenting Symptom

Neurologic Complaint No Neurologic Complaint

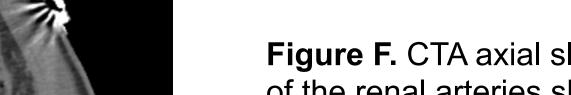
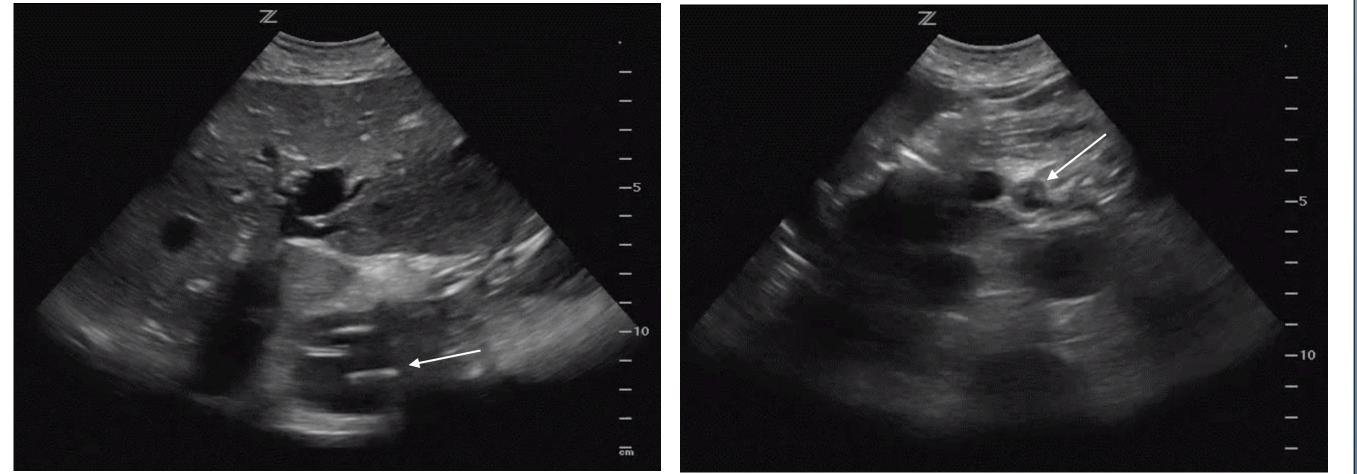


Figure F. CTA axial slice at the level

Figure I. How Does Aortic Dissection Cause Paraplegia?


Bedside ultrasound was performed by the emergency team and images are shown below.

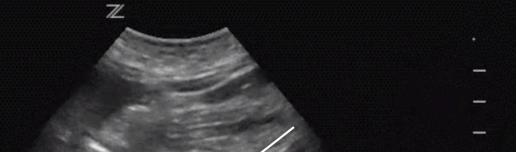
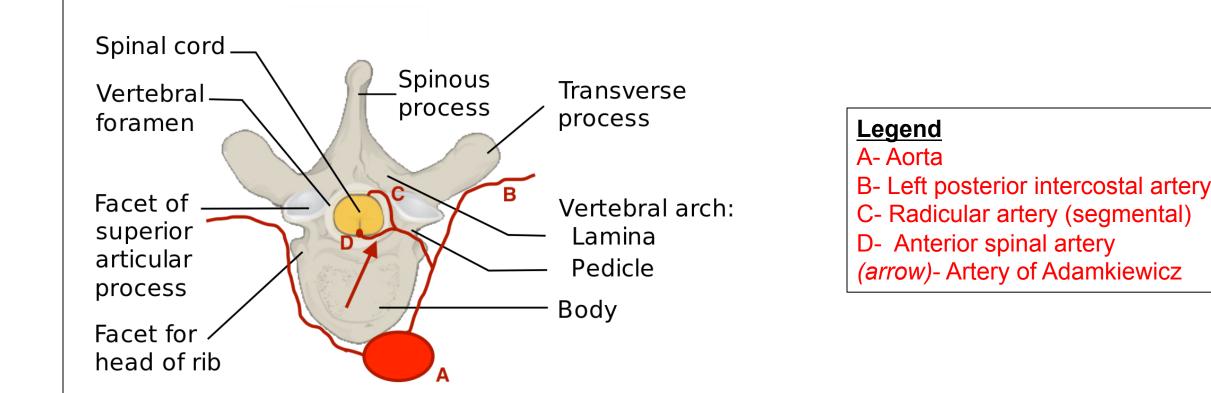


Figure A: Parasternal long echo showing moderate pericardial effusion with evidence of right ventricular free wall collapse during diastole (arrow)

Figure B: Transabdominal aortic view with pulsatile dissection flap seen in descending aorta (arrow)

Figure C: Transabdominal view of dissection flap through superior mesenteric artery (arrow)

of the renal arteries showing a small crescent shaped true lumen with maintained perfusion to the right renal artery (asterisk). The left renal artery originates from the false lumen and is completely thrombosed (arrow).


Figure G. CTA sagittal slice

and continuing through the

descending thoracic aorta

showing the extent of dissection

beginning in the ascending aorta

Perfusion to the thoracic and lumbar spinal cord is complex. In general, there are segmental arteries at each level of the spinal cord that originate from the corresponding posterior intercostal arteries. Another major source of perfusion to the anterior spinal cord is the anterior spinal artery, which originates in the cervical cord from the bilateral vertebral arteries. By the time it reaches the lower thoracic and lumbar cord, however, a large portion of its blood supply comes from the artery of Adamkiewicz- a communicating artery that generally originates from the 9-12th intercostals. Occlusion of a large number of these radicular arteries, and especially the artery of Adamkiewicz, causes near complete ischemia to the anterior spinal cord.

CONCLUSION:

Realizing the atypical presentation and using our skills as bedside sonographers helped us to immediately diagnose the patient when the wheels of our healthcare system would have expedited him away to neuro-imaging and the true etiology would have only been discovered on autopsy.⁹ There are many diseases just as life threatening as a ortic dissection that can present in atypical and exceedingly rare ways, and it is crucial that as emergency providers we train ourselves to recognize when we need to take a step back from the system and evaluate patients in a different way.

Cardiothoracic and vascular surgery were immediately consulted and a CT scan was performed that confirmed dissection of the ascending aorta extending into bilateral iliac arteries. Patient was emergently taken to the OR for successful repair of Stanford Type A aortic dissection and was transferred to the CVICU post operatively. On hospital day 2 he became increasingly hypotensive and bradycardic resulting in cardiac arrest. Despite CPR and resuscitative efforts return of spontaneous circulation was not achieved and he unfortunately passed away.

Figure H. CTA coronal slice with the contour of the abdominal aorta shown (arrow). There is near occlusion of the true lumen with only small amount of contrast reaching the level of the bilateral iliac arteries

REFERENCES:

- Hautz WE, Kammer JE, Hautz SC, et al. Diagnostic error increases mortality and length of hospital stay in patients presenting through the emergency room. Scan Jour of Trauma, Resus, and Emerg Med 2019; 27:54 2. Croskerry P. Achieving Quality in Clinical Decision Making: Cognitive Strategies and Detection of Bias. Acad Emerg Med 2002; 9(11):1184-1204 Khan IA, Nair CK. Clinical, Diagnostic, and Management Perspectives of Aortic Dissection. *Chest* 2002;122:311-328 4. Hagan PG, Nienaber CA, Isselbacher EM, et al. The International Registry of Acute Aortic Dissection: New Insights into an Old Disease. JAMA 2000;283(7):897-903. Park SW, Hutchison S, Mehta RH, et al. Association of Painless Acute Aortic Dissection With Increased Mortality. Mayo Clin Proc. 2004;79(10):1252-1257. Gaul C, Dietrich W, Friedrich I, et al. Neurological Symptoms in Type A Aortic Dissections. Stroke 2007:38:292-297. Inamasu J, Hori S, Yokoyama M, et al. Paraplegia caused by painless acute aortic dissection. Spinal Cord 2000:38:702-704
- Ohle R, Kareemi H, Wells G, Perry J. Clinical Examination for Acute Aortic Dissection: A Systematic Review and Meta-analysis. *Academic Emergency Medicine* 2018;25:398-412.
- Hdiji O, Bouzidi N, Dama M, et al. Acute aortic dissection presenting as painless paraplegia: a case report. Journ of Medical Case Reports 2016; 10:99
- 10. Image adopted and edited with permission from:
 - https://commons.wikimedia.org/wiki/File:Vertebra Superior View-en.svg