

Episerver CMS

Development
Fundamentals
Exercise Book
May 2018

Product version: Update 214

Course version: 18.05

Copyright © Episerver AB. All rights reserved.

Exercise A1 – Setting up the AlloyDemo website

Page 1

Course title: Episerver CMS – Development Fundamentals Course code: 170-3020

Course version: 18.05, 17th May 2018 Product Update 214, 14th May 2018

Episerver CMS Visual Studio Extension version: 11.3.0.359

Episerver CMS packages: EPiServer.CMS.Core 11.7.0, EPiServer.CMS.UI 11.4.4

http://world.episerver.com/releases/

Copyright © 1996-2018 EPiServer AB. All rights reserved.

Without limiting the rights under copyright, no part of this document may be reproduced, stored in or

introduced into a retrieval system or transmitted in any form or by any means (electronic, mechanical,

photocopying, recording, or otherwise), or for any purpose, without expressed written permission of

EPiServer AB. We assume no liability or responsibility for any errors or omissions in the content of this

document.

EPiServer is a registered trademark of EPiServer AB.

http://world.episerver.com/releases/

Copyright © Episerver AB. All rights reserved.

Exercise A1 – Setting up the AlloyDemo website

Page 2

Table of Contents

Copyright © Episerver AB. All rights reserved.

Exercise A1 – Setting up the AlloyDemo website

Page 3

Episerver CMS - Development Fundamentals

Student prerequisites

You should have previous experience with Microsoft Visual Studio and ASP.NET MVC development.

Software requirements

To complete these exercises, you will need:

• Microsoft Visual Studio 2015 or 2017 with latest updates.

• Episerver CMS Visual Studio Extension version 11.3.0.359.

• cmsdevfun_exercisefiles.zip containing starter, solution, and support files for the exercises, as

shown in the following screenshots:

Copyright © Episerver AB. All rights reserved.

Exercise A1 – Setting up the AlloyDemo website

Page 4

Module A – Getting Started with Episerver CMS

Goal

The overall goal of the exercises in this module is to learn how to use the core features of Episerver CMS for

editors and admins, and how to set up new Episerver websites. You will:

1. Set up an Alloy (MVC) sample website, update it to the latest version of Episerver CMS, and install

some useful add-ons.

2. Review authentication and authorization good practice, create common groups and users, and set

access rights.

3. Practice creating, editing, and publishing content.

4. Define content approval sequences, approve content, and perform A/B testing.

5. Localize content for English, Swedish, and Danish languages, localize choices in the styles drop-down

menu in the TinyMCE editor, and localize names and descriptions of content types.

6. Implement functionality to reset the administrator account in case of a forgotten password.

Exercise A1 – Setting up the AlloyDemo website

In this exercise, you will set up an Alloy (MVC) site, update it to use the latest version of Episerver CMS, and

you will install some add-ons that extend Episerver with extra features:

• Episerver Forms:

http://webhelp.episerver.com/latest/addons/episerver-forms/episerver-forms.htm

• Episerver TinyMCE customization: https://world.episerver.com/documentation/developer-

guides/CMS/add-ons/customizing-the-tinymce-editor-v2/

• Episerver A/B Testing: http://webhelp.episerver.com/latest/cms-edit/ab-testing.htm

Minimum development system requirements

http://world.episerver.com/documentation/Items/System-Requirements/System-Requirements---EPiServer/

• Microsoft Windows 8, or later, or Windows Server 2012, or later.

• Microsoft Visual Studio 2015, or later.

Installing Microsoft Visual Studio Community 2017

1. Download and install Microsoft Visual Studio Community 2017 from the following link:

https://www.visualstudio.com/downloads/

http://webhelp.episerver.com/latest/addons/episerver-forms/episerver-forms.htm
https://world.episerver.com/documentation/developer-guides/CMS/add-ons/customizing-the-tinymce-editor-v2/
https://world.episerver.com/documentation/developer-guides/CMS/add-ons/customizing-the-tinymce-editor-v2/
http://webhelp.episerver.com/latest/cms-edit/ab-testing.htm
http://world.episerver.com/documentation/Items/System-Requirements/System-Requirements---EPiServer/
https://www.visualstudio.com/downloads/

Copyright © Episerver AB. All rights reserved.

Exercise A1 – Setting up the AlloyDemo website

Page 5

2. At a minimum, choose the workloads: ASP.NET and web development, Azure development, and

.NET Core cross-platform development.

3. Add the individual components: Azure Storage AzCopy, Class Designer, Git for Windows, GitHub

extension for Visual Studio, and PowerShell tools.

Installing the Episerver CMS Visual Studio Extension

1. Start Microsoft Visual Studio.

2. Navigate to Tools | Extensions and Updates…, and in the section on the left, click Online, to show

the Visual Studio Marketplace.

3. Press Ctrl + E, or click in the Search box, and then enter Episerver.

4. Select the Episerver CMS Visual Studio Extension, click Download.

5. Wait for the extension to download, and then click Close.

6. Close Visual Studio and wait for the VSIX Installer to start.

7. Click Modify, wait for it to complete installing, and then click Close.

Configuring the Episerver NuGets package source

1. Start Microsoft Visual Studio.

2. Navigate to Tools | NuGet Package Manager | Package Manager Settings.

3. In the Options dialog, in the list on the left, click Package Sources.

https://www.microsoft.com/en-gb/download/details.aspx?id=42299
https://marketplace.visualstudio.com/items?itemName=EPiServer.EpiserverCMSVisualStudioExtension

Copyright © Episerver AB. All rights reserved.

Exercise A1 – Setting up the AlloyDemo website

Page 6

4. If the Episerver NuGet feed doesn’t exist as an available package source, as shown in the following

screenshot, then click the green plus button to add it. The name can be anything, although we

recommend using Episerver NuGets, and the path must be:

https://nuget.episerver.com/feed/packages.svc/

Creating an Alloy (MVC) Episerver website with sample content

1. In Visual Studio, navigate to File | New | Project…, or press Ctrl + Shift + N.

2. In the left section, navigate to Installed | Templates | Visual C# | Episerver.

3. In the middle section, select Episerver Web Site project, and enter the following options:

• Name: AlloyDemo

• Location: C:\Episerver (or some other folder).

• Solution name: CMSTraining (or something else unique).

• Create directory for solution: Yes

• Framework: .NET Framework 4.6.1 (or a later compatible version).

4. Click OK.

Copyright © Episerver AB. All rights reserved.

Exercise A1 – Setting up the AlloyDemo website

Page 7

5. Choose the Alloy (MVC) template, and in the Configure Search section, select Episerver Search, as

shown in the following screenshot:

6. Click OK and wait for the project to be created.

Updating the Episerver NuGet packages

1. In Visual Studio, navigate to Tools | NuGet Package Manager | Package Manager Console.

2. In Package Manager Console, set these two options, as shown in the following screenshot:

a) Package source: All

b) Default project: AlloyDemo

3. Enter the following command to update all packages referenced by the project AlloyDemo using

restrictions defined in packages.config:

Update-Package -ProjectName AlloyDemo -ToHighestMinor

Doing updates at the command line allows Episerver packages to be safely installed because it won’t

upgrade to a higher major version that would have breaking changes, and non-Episerver dependencies will

be updated, as well as the EPiServer ones, for example, Microsoft.Tpl.DataFlow, but won’t accidently install

newer but incompatible packages. If you don’t have the latest version of NuGet, you can follow instructions

here: https://docs.microsoft.com/en-us/nuget/guides/install-nuget

Updating the Episerver database

1. Start the site by navigating to Debug | Start Without Debugging or press Ctrl + F5.

https://docs.microsoft.com/en-us/nuget/guides/install-nuget

Copyright © Episerver AB. All rights reserved.

Exercise A1 – Setting up the AlloyDemo website

Page 8

2. If you see an exception message about the EPiServerDB database, as shown in the following

screenshot, then changes need to be made to the database schema:

3. Close the browser.

There are two ways to update the Episerver CMS database schema: manually with a console command, or

automatically, with a Web.config setting, as explained in the error message. Recommended practice for

deployments that you have control over is to perform migrations manually, especially if you have written

custom SQL scripts to manipulate the CMS database schema, for example, to improve DDS performance. If

you are deploying to DXC Service, we recommend using the Web.config setting.

4. In Visual Studio, navigate to Tools | NuGet Package Manager | Package Manager Console.

5. Make sure the Default project is AlloyDemo, as shown in the following screenshot, and at the

prompt enter:

Update-EPiDatabase

Testing the Episerver website and registering an administrator account

1. Start the site by navigating to Debug

| Start Without Debugging or press

Ctrl + F5.

2. You will be prompted to Create

Administrator Account, as shown in

the following screenshot, so enter

the following details:

• Username: Admin or something else

but make a note of it!

• Email: admin@alloy.com or some

other e-mail address (it does not

need to be real).

• Password: Pa$$w0rd or something

else but make a note of it!

https://nuget.episerver.com/en/Comparedatabase/

Copyright © Episerver AB. All rights reserved.

Exercise A1 – Setting up the AlloyDemo website

Page 9

3. If you use Chrome, it will prompt to save your Username and Password, so click Save, as shown in

the following screenshot:

4. You should now see the Alloy sample site’s Start page, as shown in the following screenshot:

5. Click the epi menu in the top-right corner, as shown in the following screenshot:

6. At the top of the page, pull down the orange Global menu, and optionally click the pull-down menu

a second time if you would like to pin it, as shown in the following screenshot:

Copyright © Episerver AB. All rights reserved.

Exercise A1 – Setting up the AlloyDemo website

Page 10

7. Navigate to CMS | Admin | Config | Tool Settings | Plug-in Manager to confirm the version of

Episerver CMS you are using, as shown in the following screenshot:

• EPiServer and EPiServer.Cms.AspNet version 11.5.2.0: these are the CMS Core APIs.

• EPiServer User Interface and EPiServer.Cms.Shell.UI version 11.4.3.0: these are the CMS user

interface including Edit and Admin views.

8. Close the browser.

Windows 7 users

<appSettings>
 <add key="Epi.WebSockets.Enabled" value="false"/>

Installing some useful add-ons

1. Open the AlloyDemo project and view Solution Explorer.

2. Expand ~\modules_protected folder, as shown in the screenshot:

3. Navigate to Tools | NuGet Package Manager | Package Manager Console.

4. Enter the following command to install Episerver Forms:

 

Install-Package -ProjectName AlloyDemo EPiServer.Forms

5. Enter the following command to install A/B testing:

Copyright © Episerver AB. All rights reserved.

Exercise A1 – Setting up the AlloyDemo website

Page 11

Install-Package -ProjectName AlloyDemo EPiServer.Marketing.Testing

6. Enter the following command to update dependent packages:

Update-Package -ProjectName AlloyDemo -ToHighestMinor

7. Enter the following command to update the database schema, as shown in the following

screenshot:

Update-EPiDatabase

Exploring Episerver Forms, TinyMCE, and A/B Testing

1. Start the website by navigating to Debug | Start Without Debugging or pressing Ctrl + F5.

2. Scroll down the Start page, and in the Customer Zone, click Log in, as shown in the following

screenshot:

3. Log in as Admin and click the epi menu to switch to Edit view for the current page.

4. Navigate to one of the product pages, like Alloy Plan, click the Main Body property, and note the

rich text editing toolbar including Fullscreen mode, as shown in the following screenshot:

5. In Edit view, click Toggle assets pane, as shown in the following screenshot:

Copyright © Episerver AB. All rights reserved.

Exercise A1 – Setting up the AlloyDemo website

Page 12

6. In the Assets pane, note the Forms tab, next to

Blocks and Media, and the Form Elements and

Achived Tests gadgets.

7. At the bottom of the Assets pane, in Archived Tests,

click the Settings button, and select Remove Gadget,

as shown in the screenshot:

8. Close the browser.

Copyright © Episerver AB. All rights reserved.

Exercise A2 – Reviewing and creating groups and users

Page 13

Exercise A2 – Reviewing and creating groups and users

In this exercise, you will create users and groups with different access rights on the website.

Prerequisites: complete Exercise A1.

Reviewing authentication and authorization in an Alloy (MVC) site

1. In the AlloyDemo project, open ~/Web.config.

2. Navigate to Edit | Find and Replace | Quick Find, or press Ctrl + F, and enter <au to find the

<authentication> element, as shown in the following screenshot:

3. Note the mode and loginUrl attributes.

4. Find the <membership> and <roleManager> elements, and note they are cleared because Alloy

(MVC) does not use ASP.NET Membership.

5. Open ~/Startup.cs. and review the Configuration method, as partially shown in the following

code:

// Add CMS integration for ASP.NET Identity
app.AddCmsAspNetIdentity<ApplicationUser>();

// Remove to block registration of administrators
app.UseAdministratorRegistrationPage(
 () => HttpContext.Current.Request.IsLocal);

// Use cookie authentication
app.UseCookieAuthentication(new CookieAuthenticationOptions

6. In Solution Explorer, click Show All Files.

7. Expand the ~\App_Data folder, and note the blobs and Index folders, and the SQL database file, as

shown in the following screenshot:

8. Double-click EPiServerDB_{GUID}.mdf to open a database connection to it.

Copyright © Episerver AB. All rights reserved.

Exercise A2 – Reviewing and creating groups and users

Page 14

9. In Server Explorer, expand Tables, and note the tables that begin with AspNet, as shown in the

following screenshot:

10. Right-click AspNetRoles, and click Show Table Data, and note the WebAdmins role has been

created for you, as shown in the following screenshot:

11. Right-click AspNetUsers, and click Show Table Data, and note the Admin user (or whatever you

entered on the register page) has been created for you, and that it has columns for the following to

implement best practice for security: IsApproved, LastLoginDate, Email, PasswordHash (the

original password is not stored), AccessFailedCount, UserName.

12. Close both tables.

13. In Server Explorer, right-click EPiServerDB (AlloyDemo), and click Close Connection.

Reviewing virtual roles and changing the default mapping for CmsEditors

You will now follow good practice by reviewing and modifying the configuration of the virtual roles that give

access to the working areas of Episerver CMS. Most projects should not leave the default configuration as-

is so you will make some changes to learn some common modifications that you might make.

1. In the AlloyDemo project, open ~\Web.config.

2. Find the <virtualRoles> element, as shown in the following configuration:

<episerver.framework>
 <appData basePath="App_Data" />
 <scanAssembly forceBinFolderScan="true" />
 <virtualRoles addClaims="true">
 <providers>
 <add name="Administrators"
 type="EPiServer.Security.WindowsAdministratorsRole, EPiServer.Framework" />
 <add name="Everyone"
 type="EPiServer.Security.EveryoneRole, EPiServer.Framework" />
 <add name="Authenticated"
 type="EPiServer.Security.AuthenticatedRole, EPiServer.Framework" />
 <add name="Anonymous"
 type="EPiServer.Security.AnonymousRole, EPiServer.Framework" />
 <add name="CmsAdmins"
 type="EPiServer.Security.MappedRole, EPiServer.Framework"
 roles="WebAdmins, Administrators" mode="Any" />
 <add name="CmsEditors"
 type="EPiServer.Security.MappedRole, EPiServer.Framework"
 roles="WebEditors" mode="Any" />
 <add name="Creator"

Copyright © Episerver AB. All rights reserved.

Exercise A2 – Reviewing and creating groups and users

Page 15

 type="EPiServer.Security.CreatorRole, EPiServer" />

3. Find the existing entry for CmsAdmins, and modify it so that a stored role named

AccessToAdminView as well as WebAdmins and Administrators maps to CmsAdmins, as shown

underlined in the following markup:

<add name="CmsAdmins"
 type="EPiServer.Security.MappedRole, EPiServer.Framework"
 roles="WebAdmins, Administrators, AccessToAdminView" mode="Any" />

4. Find the existing entry for CmsEditors, and modify it so that a stored role named AccessToEditView

maps to CmsEditors instead of WebEditors, as shown underlined in the following markup:

<add name="CmsEditors"
 type="EPiServer.Security.MappedRole, EPiServer.Framework"
 roles="AccessToEditView" mode="Any" />

5. Add an entry at the bottom of the list of virtual role providers, that maps members of a stored role

named Personalizers to the virtual role named VisitorGroupAdmins, as shown in the following

markup:

<add name="VisitorGroupAdmins"
 type="EPiServer.Security.MappedRole, EPiServer.Framework"
 roles="Personalizers" mode="Any" />

6. Add an entry at the bottom of the list of virtual role providers, that maps members of a stored role

named Developers to the virtual role named EPiBetaUsers, as shown in the following markup:

<add name="EPiBetaUsers"
 type="EPiServer.Security.MappedRole, EPiServer.Framework"
 roles="Developers" mode="Any" />

7. Find the <location path="EPiServer"> element, and note the <authorization> element

allows members of WebEditors, WebAdmins, or Adminstrators to access the EPiServer path, as

shown in the following markup:

<location path="EPiServer">
 <system.web>
 ...
 <authorization>
 <allow roles="WebEditors, WebAdmins, Administrators" />
 <deny users="*" />
 </authorization>

Copyright © Episerver AB. All rights reserved.

Exercise A2 – Reviewing and creating groups and users

Page 16

8. Replace the three <allow> roles with CmsEditors and CmsAdmins, as shown in the following

markup:

<allow roles="CmsEditors, CmsAdmins" />

9. Find the <location path="EPiServer/CMS/admin"> element, and note the <authorization>

element allows members of WebAdmins or Adminstrators to access the EPiServer/CMS/admin

path, as shown in the following markup:

<location path="EPiServer/CMS/admin">
 <system.web>
 ...
 <authorization>
 <allow roles="WebAdmins, Administrators" />
 <deny users="*" />
 </authorization>

10. Replace the two <allow> roles with CmsAdmins, as shown in the following markup:

<allow roles="CmsAdmins" />

11. Find the <location path="Views/Plugins"> element, and note the <authorization> element

allows members of WebEditors, WebAdmins, or Adminstrators to access the Views/Plugins path, as

shown in the following markup:

<location path="Views/Plugins">
 <system.web>
 <authorization>
 <allow roles="WebAdmins, WebEditors, Administrators" />
 <deny users="*" />
 </authorization>

12. Replace the three entries with CmsEditors and CmsAdmins, as shown in the following markup:

<allow roles="CmsEditors, CmsAdmins" />

Reviewing the current groups and users

1. Start the AlloyDemo website, and log in as Admin.

2. Navigate to CMS | Admin | Admin | Access Rights | Administer Groups, as shown in the following

screenshot:

Copyright © Episerver AB. All rights reserved.

Exercise A2 – Reviewing and creating groups and users

Page 17

3. Click WebAdmins, to show the members of that group, as shown in the following screenshot:

4. Navigate to CMS | Admin | Admin | Access Rights | Set Access Rights, and note that by default

the Start page (and all other pages) inherit their access rights from their parent item, as shown in

the following screenshot:

5. Click Root, and note that it has entries for Administrators (usually the name of a Windows-stored

group), Everyone (a virtual role) and WebAdmins (usually the name of an SQL-stored group in the

CMS database), as shown in the following screenshot:

Copyright © Episerver AB. All rights reserved.

Exercise A2 – Reviewing and creating groups and users

Page 18

Creating some new groups and a user using Admin view

1. Navigate to CMS | Admin | Admin | Access Rights | Administer Groups.

2. Click + Add.

3. Enter the name AccessToEditView and click Save.

4. Add a few more groups:

a. AccessToAdminView: this is mapped to CmsAdmins which gives access to all working

areas including Admin view.

b. ContentCreators: members of this group will be able to create, change, and publish

content throughout the site, except in the News & Events section.

c. NewsEditors: members of this group will be the only editors who can create, change, and

publish pages in the News & Events section.

d. Marketers: members of this group will be the only editors who can create Product pages.

e. Developers: members of this group can access beta features.

5. Navigate to CMS | Admin | Admin | Access Rights | Create User, and fill in the following

information, as shown in the following screenshot:

a. Username: Alice

b. Password: Pa$$w0rd

c. E-mail address: alice@alloy.com

d. Active: selected

e. Member of: AccessToAdminView

6. Click Save.

Assigning access rights using Admin view

1. Navigate to CMS | Admin | Admin | Access Rights | Set Access Rights.

2. In the content tree, select Root.

Copyright © Episerver AB. All rights reserved.

Exercise A2 – Reviewing and creating groups and users

Page 19

3. Click Add Users/Groups, as shown in the following screenshot:

4. Search for Groups, add ContentCreators, Marketers, and CmsAdmins, and click OK, as shown in

the following screenshot:

5. Modify the following roles and their access rights, as shown in the following screenshot:

a. Administrators: clear all access rights.

b. WebAdmins: clear all access rights.

c. CmsAdmins: set all access rights.

Copyright © Episerver AB. All rights reserved.

Exercise A2 – Reviewing and creating groups and users

Page 20

d. ContentCreators: set Read, Create, Change, Delete access rights.

e. Marketers: set Create and Publish access rights.

6. Click Save.

7. In the Set Access Rights content tree, select Recycle Bin.

8. Click Add Users/Groups.

9. Search for Groups, add the CmsAdmins group, and click OK.

10. Clear all access rights from Administrators, and assign all access rights to CmsAdmins, as shown in

the following screenshot:

11. Click Save.

12. In the Set Access Rights content tree, expand Start, expand About us, and select News & Events.

13. Clear the Inherit settings from parent item check box.

14. Click Add Users/Groups.

15. Search for Groups, add the NewsEditors group, and click OK.

Copyright © Episerver AB. All rights reserved.

Exercise A2 – Reviewing and creating groups and users

Page 21

16. Clear all access rights from ContentCreators and Marketers, and assign all access rights to

NewsEditors, as shown in the following screenshot:

17. Click Save.

18. In Admin view, click Content Type, click [Products] Product, and then click Settings, as shown in the

following screenshot:

Copyright © Episerver AB. All rights reserved.

Exercise A2 – Reviewing and creating groups and users

Page 22

19. At the bottom of the Information tab, click Add Users/Groups, search and add the Marketers group,

clear the check box for Everyone, and click Save, as shown in the following screenshot:

20. In Admin view, click Config, click Permissions for Functions, and then next to Detailed error

messages for troubleshooting, click Edit, as shown in the following screenshot:

21. Click Add Users/Groups, search and add the CmsAdmins and Developers groups, clear the check

box for Administrators, and click Save, as shown in the following screenshot:

22. Close the browser.

Automating the management of groups, users, and access rights

Now that you have seen how to manage authorization by manually using Admin view, you will write some

code to automate the process to create some more groups and users and set their access rights.

1. If you haven’t done so already, extract the folders and files in cmsdevfun_exercisefiles.zip.

2. Drag and drop the \cmsdevfun-exercisefiles\Module A\A2\Features\ folder into the AlloyDemo

project.

3. Expand the Features folder and review the files included, as

shown in the screenshot:

a. RegisterPersonas.cs: a static class to enable the feature.

b. RegisterPersonas.cshtml: a Razor file for the user

interface of the feature.

c. RegisterPersonasController.cs: a controller that performs

the work of the feature.

4. In AlloyDemo, in the root of the website, open Startup.cs, and import the

AlloyDemo.Features.RegisterPersonas namespace.

5. Add a statement to the Configuration method to call the UseRegisterPersonas extension

method that enables registering of personas, as shown in the following code:

app.UseRegisterPersonas(() => HttpContext.Current.Request.IsLocal);

Copyright © Episerver AB. All rights reserved.

Exercise A2 – Reviewing and creating groups and users

Page 23

6. Start the website, and note that

a page appears offering to

register some personas for you,

as shown in the screenshot:

7. Click Yes, do it!, and note the

success message.

8. Log in as Admin or Alice and

navigate to CMS | Admin |

Admin | Search User/Group.

9. Click Search to list all the users, as shown in the following screenshot:

10. Click each new user to see which group(s) they have been made a member of and note that three

new groups that were created: CLevelExecs, Lawyers, and Personalizers.

11. Open Startup.cs, comment out the statement that calls the UseRegisterPersonas extension

method, and save changes.

Optional: Review alternative authentication providers

Review the following topics in the documentation and popular blog articles:

• Federated security: http://world.episerver.com/documentation/developer-

guides/CMS/security/federated-security/

• OWIN authentication: http://world.episerver.com/documentation/developer-

guides/CMS/security/owin-authentication/

• EPiServer CMS UI AspNetIdentity OWIN authentication:

http://world.episerver.com/documentation/developer-guides/CMS/security/episerver-

aspnetidentity/

• Configuring mixed-mode OWIN authentication:

http://world.episerver.com/documentation/developer-guides/CMS/security/configuring-mixed-

mode-owin-authentication/

• Configuring Active Directory membership provider:

http://world.episerver.com/documentation/developer-guides/CMS/security/Configuring-Active-

Directory-membership-provider/

• Integrate Azure AD using OpenID Connect: http://world.episerver.com/documentation/developer-

guides/CMS/security/integrate-azure-ad-using-openid-connect/

http://world.episerver.com/documentation/developer-guides/CMS/security/federated-security/
http://world.episerver.com/documentation/developer-guides/CMS/security/federated-security/
http://world.episerver.com/documentation/developer-guides/CMS/security/owin-authentication/
http://world.episerver.com/documentation/developer-guides/CMS/security/owin-authentication/
http://world.episerver.com/documentation/developer-guides/CMS/security/episerver-aspnetidentity/
http://world.episerver.com/documentation/developer-guides/CMS/security/episerver-aspnetidentity/
http://world.episerver.com/documentation/developer-guides/CMS/security/configuring-mixed-mode-owin-authentication/
http://world.episerver.com/documentation/developer-guides/CMS/security/configuring-mixed-mode-owin-authentication/
http://world.episerver.com/documentation/developer-guides/CMS/security/Configuring-Active-Directory-membership-provider/
http://world.episerver.com/documentation/developer-guides/CMS/security/Configuring-Active-Directory-membership-provider/
http://world.episerver.com/documentation/developer-guides/CMS/security/integrate-azure-ad-using-openid-connect/
http://world.episerver.com/documentation/developer-guides/CMS/security/integrate-azure-ad-using-openid-connect/

Copyright © Episerver AB. All rights reserved.

Exercise A3 – Creating, editing, saving, and publishing content

Page 24

Exercise A3 – Creating, editing, saving, and publishing content

In this exercise, you will get an understanding of how an editor works in the Episerver CMS. You will create

a new page, add some links and images, and publish the page.

Prerequisites: complete Exercises A1 and A2.

While working through these exercises, note the groups, users, access rights, and resources that were

defined in Exercise A2, as summarized in the following table:

Groups Users Access rights Resources

AccessToAdminView
Admin,
Alice

All All

AccessToAdminView,
Developer

Dana All All

ContentCreators Eve
Read, Create,
Change, Delete

All content, except News & Events
and Product pages

NewsEditors Nick Full News & Events

Marketers Michelle
Create, Publish All content, except News & Events

Create type Product pages

Adding and publishing a new product page

1. Start the AlloyDemo website, log in as Eve, and note that she only has access to CMS | Edit and

CMS | Reports, as shown in the following screenshot:

2. Under the Start page, add a new page, as shown in the following screenshot:

3. In the list of page types, note that Product is not available for Eve, because only members of

Marketers have access rights to create product pages.

Copyright © Episerver AB. All rights reserved.

Exercise A3 – Creating, editing, saving, and publishing content

Page 25

4. Log out Eve, and log in as Michelle, and note that she has access to CMS | Edit, CMS | Reports,

and CMS | Visitor Groups, as shown in the following screenshot:

5. Add a new page under Start.

6. Click Product, enter the name Alloy Go, and note that you must enter some USPs, as shown in the

following screenshot:

7. Enter some USPs and click Create.

8. Note that Michelle can create a product page, and she can publish it, but she cannot edit it, as

shown in the following screenshot:

9. Publish Alloy Go.

10. Log out as Michelle.

Editing the product page

1. Log in as Eve.

2. Edit Alloy Go.

Copyright © Episerver AB. All rights reserved.

Exercise A3 – Creating, editing, saving, and publishing content

Page 26

3. Enter a page description, as shown in the following screenshot:

4. Enter some text for the main body. Be creative.

5. Click Options button and note that Eve cannot publish.

6. Click Ready to Publish, as shown in the following screenshot:

7. In Assets pane, select Media tab, and under the For All Sites folder, create a new folder named

Alloy Go.

8. Use your favourite search engine to find some suitable images of travel related items, and upload

them to the Alloy Go folder.

9. Drag and drop the image(s) into the main body, and explore the image editor feature.

10. Create a Teaser block in the Alloy Go folder.

Copyright © Episerver AB. All rights reserved.

Exercise A3 – Creating, editing, saving, and publishing content

Page 27

11. Open the Alloy Go page. You previously set Alloy Go page to Ready to Publish, so it is locked. Click

Options, and select Withdraw and Edit, as shown in the following screenshot:

12. Drag and drop the teaser block you created into the MainContentArea on Alloy Go page.

13. Click Options, and select Ready to Publish.

14. In Navigation pane, try to add a new page under About us | News & Events, and note that section

and its children are locked for Eve, as shown in the following screenshot:

15. Log out as Eve.

Adding and publishing a new article page

1. Log in as Nick.

Copyright © Episerver AB. All rights reserved.

Exercise A3 – Creating, editing, saving, and publishing content

Page 28

2. In Navigation pane, try to add a new page under About us | News & Events | Events, and note that

section and its children are available for Nick, but all other pages are locked, as shown in the

following screenshot:

3. Create an Article page under About us | News & Events | Events, named Panda is cute!

4. Publish the new page, as shown in the following screenshot:

5. Log out as Nick.

6. Log in as Larry, and note that all content is locked for Larry.

7. Close the browser.

Reviewing the online user guides

1. Start the AlloyDemo website, and log in as anyone.

Copyright © Episerver AB. All rights reserved.

Exercise A3 – Creating, editing, saving, and publishing content

Page 29

2. In the Global menu, click Help | User Guide, as shown in the following screenshot:

3. Navigate to CMS | CMS for editors | Creating content, and review some of the editing features like

using the rich-text editor, adding and editing images, or Working with versions, as shown in the

following screenshot:

Copyright © Episerver AB. All rights reserved.

Exercise A4 – Personalizing, approving, and A/B testing content

Page 30

Exercise A4 – Personalizing, approving, and A/B testing content

In this exercise, you will get an understanding of how personalization with visitor groups works, and how

content approvals and A/B testing for marketing works. You will create a new page as one user, and then

approve it as a sequence of other users. You will also perform A/B testing on some content.

Prerequisites: complete Exercises A1 and A2.

While working through these exercises, remember the groups, users, access rights, and resources that you

defined in Exercise A2, as summarized in the following table:

Groups Users Access rights Resources

ContentCreators Eve Full, except Administer All content, except News & Events

NewsEditors Nick Full News & Events

Marketers Michelle
Create, Publish All content, except News & Events

Create type Product pages

AccessToAdminView Alice All All

Lawyers Larry n/a n/a

CLevelExecs Carlos n/a n/a

Define some visitor groups for personalization

1. Open the Training solution with the AlloyDemo project.

2. Start the AlloyDemo site, and log in as Alice.

3. Navigate to CMS | Visitor Groups, and click + Create.

4. Enter the following, as shown in the following screenshot:

a. Name: Swedish Weekenders

b. Notes: Visitors from Sweden at the weekend.

c. Security role: selected

d. Statistics: selected

5. Drag and drop from the Time and Place Criteria section, as shown in the following screenshot:

a. Geographic Location: Europe, Sweden

b. Time of Day: Day of week: Saturday and Sunday

Copyright © Episerver AB. All rights reserved.

Exercise A4 – Personalizing, approving, and A/B testing content

Page 31

6. Click Save.

7. Click + Create.

8. Enter the following, as shown in the following screenshot:

a. Name: Alloy Meet Promotion

b. Notes: Visitors who have expressed an interest in Alloy Meet.

c. Security role: selected

d. Statistics: selected

e. Match: Points

9. Drag and drop from the Site Criteria section, as shown in the following screenshot:

a. Visited Category: Alloy Meet, at least 2 pages; 2 points

b. User Profile: Title contains Manager; 1 point

c. Number of Visits: More than 3 within 60 days; 1 point

d. Visited Page: Alloy Meet; 3 points

10. Set Threshold to 3 out of 7 points.

11. Cick Save.

Install some extra visitor groups criteria

The default 11 visitor groups criteria are shown in the following screenshots:

Copyright © Episerver AB. All rights reserved.

Exercise A4 – Personalizing, approving, and A/B testing content

Page 32

After installing the Visitor Groups Criteria Pack add-on, you will have 11 more.

1. In Visual Studio, navigate to Tools | NuGet Package Manager | Package Manager Console.

2. Enter the following command:

Install-Package -ProjectName AlloyDemo EPiServer.VisitorGroupsCriteriaPack

3. Start the website and log in as Admin.

4. Navigate to CMS | Visitor Groups.

5. Click Create, and note the extra criteria, such as Selected Language and Submitted Form, as

shown in the following screenshot:

Copyright © Episerver AB. All rights reserved.

Exercise A4 – Personalizing, approving, and A/B testing content

Page 33

The Visitor Groups Criteria Pack adds 11 more criteria, as shown in the following screenshots:

Create some personalized content

1. In Edit view, open Assets panes, on the Blocks tab, in the Alloy Meet folder, create a Teaser block

named Alloy Meet Promotion, as shown in the following screenshot:

2. Publish the block.

3. Edit the Start page, and drag and drop Alloy Meet Promotion to the top of its main content area.

4. In the block’s context menu, click Personalize, as shown in the following screenshot:

5. Select Alloy Meet Promotion, as shown in the following screenshot:

Copyright © Episerver AB. All rights reserved.

Exercise A4 – Personalizing, approving, and A/B testing content

Page 34

6. To preview the page as if you are a member of the visitor group, in the toolbar, toggle view settings,

click Alloy Meet Promotion, as shown in the following sreeenshot:

Explore content approvals

You can read the Episerver CMS Editor User Guide to learn how to use this feature.

http://webhelp.episerver.com/latest/cms-edit/content-approvals.htm

1. Open the Training solution with the AlloyDemo project.

2. Start the AlloyDemo site, and log in as Alice.

3. Navigate to CMS | Edit, and view the Pages in the Navigation pane.

4. Expand About us and News & Events.

http://webhelp.episerver.com/latest/cms-edit/content-approvals.htm

Copyright © Episerver AB. All rights reserved.

Exercise A4 – Personalizing, approving, and A/B testing content

Page 35

5. Click the content menu for Press Releases, and choose Edit Approval Sequence, as shown in the

following screenshot:

6. Set the approval sequence for the Press Releases page to Enabled.

Copyright © Episerver AB. All rights reserved.

Exercise A4 – Personalizing, approving, and A/B testing content

Page 36

7. Set Require comment on Decline.

8. Add three steps, and assign the groups that you created in Exercise A2, as shown in the following

screenshot, and as listed in the following lettered bullets:

a. Legal review by a lawyer

b. Strategic review by a C-Level executive

c. Review of Swedish content by Alice, who speaks Swedish fluently, and a review of other

languages by anyone with access to Edit view

9. Save the sequence.

Enabling group members to approve

The members of the Lawyers and CLevelExecs groups have access to Edit view, but they have no other

access rights. They must have at least Change access right to Press Releases to be able to approve

content.

1. In Admin view, navigate to Admin | Access Rights | Set Access Rights.

2. In the content tree, expand About us, expand News & Events, and select Press Releases.

Copyright © Episerver AB. All rights reserved.

Exercise A4 – Personalizing, approving, and A/B testing content

Page 37

3. Clear the Inherit settings from parent item check box.

4. Click Add/Users Groups.

5. Search for, and add, Lawyers and CLevelExecs.

6. Give Change access rights to Lawyers and CLevelExecs, as shown in the following screenshot:

7. Click Save.

Test the approval sequence

1. Log in as Nick.

2. Add a new Article to the Press Releases named Batman saves Panda!

3. Mark the page as Ready for Review, and note that the page is currently in review in step 1 of 3, as

shown in the following screenshot:

4. Log out, and log in again as Larry.

5. Click the notification bell, click the notification, and Approve the article.

6. Log out, and log in again as Carlos.

7. Click the notification bell, click the notification, and Approve the article.

8. Log out, and log in again as Nick.

9. Click the notification bell, click the notification, and Approve the article.

10. Publish the article.

11. Repeat the process for a new article, but see what happens when a lawyer declines approval.

Copyright © Episerver AB. All rights reserved.

Exercise A4 – Personalizing, approving, and A/B testing content

Page 38

Explore A/B testing

You can read the Episerver CMS Editor User Guide to learn

how to use this feature if your instructor did not

demonstrate it.

http://webhelp.episerver.com/latest/cms-edit/ab-

testing.htm

Experiment with the A/B testing, as shown in the following

screenshot:

http://webhelp.episerver.com/latest/cms-edit/ab-testing.htm
http://webhelp.episerver.com/latest/cms-edit/ab-testing.htm

Copyright © Episerver AB. All rights reserved.

Exercise A5 – Localizing content

Page 39

Exercise A5 – Localizing content

In this exercise, you will localize some content into Swedish and Danish, including pages and blocks.

Prerequisites: complete Exercise A1.

Enabling Danish language for the website content

1. Open the Training solution with the AlloyDemo project.

2. Start the site, and log in as Admin.

3. Navigate to CMS | Admin | Config | Manage Website Languages, and note that English and

Swedish are already enabled by the Alloy (MVC) project template.

4. Click Danish (dansk) language.

5. Check the Enabled box, click Save, as shown in the following screenshot:

6. Navigate to CMS | Edit | Pages | Start page.

7. Click Tools | Language Settings, as shown in the following screenshot:

8. In Settings for Editors, click Change.

9. Check the dansk box, and click Save, as shown in the following screenshot:

Copyright © Episerver AB. All rights reserved.

Exercise A5 – Localizing content

Page 40

10. In Settings for Site Visitors | Fallback Languages, click Change.

11. Set Swedish to fallback to Danish, and then English.

12. Set Danish to fallback to Swedish, with no second fallback, then click Save, as shown in the

following screenshot:

13. Close the Language Settings dialog box.

Translating content

1. In the Navigation pane, click Sites, and then switch to the svenska

(Swedish) site, as shown in the screenshot:

2. Note the Start page has already been “translated” into Swedish in the

Alloy (MVC) project template.

3. Edit the name of the page to Hem (home in Swedish) and the Name in URL to hem, as shown in

the following screenshot:

4. Publish the changes.

5. In Navigation, click Sites, and switch to the Danish language site, and note the page is visible to a

visitor who asks for Danish (dansk) because it falls back to Swedish, as shown in the following

screenshot:

Copyright © Episerver AB. All rights reserved.

Exercise A5 – Localizing content

Page 41

6. Click Translate. Note the page is NOT translated automatically for you. You must translate the text

yourself (Hjem is Danish for home), and then click Create, as shown in the following screenshot:

7. Publish the page.

8. View the site as a visitor and enter /da/ at the end of the address box. Note that when viewed in

Danish, the Danish Start page (which is empty) is displayed, and there are no links to other pages

like products, because Danish can only fallback to Swedish pages, as shown in the following

screenshot:

9. Change /da/ to /sv/ to request the Swedish start page, and note that due to fallback language

settings, when content is not available in Swedish, it can fall back to English content, for example

links to product pages, as shown in the following screenshot:

10. View the Alloy Meet page. It falls back to English, as shown in the following screenshot:

11. In the address bar, change sv to da, and note the 404 error due to strict language routing rules, as

shown in the following screenshot:

12. Switch to Edit view.

13. Extract the folders and files in cmsdevfun_exercisefiles.zip.

Copyright © Episerver AB. All rights reserved.

Exercise A5 – Localizing content

Page 42

14. Translate the Alloy Meet page into Swedish, as shown in the following screenshot:

15. Translate the Heading, Page description, and Main body properties using the translations.pdf file,

as shown in the following screenshot:

16. Publish the page.

17. Switch to the Danish site, translate and publish the Danish version of the Alloy Meet page.

18. View the site as a visitor. The Danish Alloy Meet page does not show blocks, because the blocks

only exist in English, not Danish or Swedish, as shown in the following screenshot:

Copyright © Episerver AB. All rights reserved.

Exercise A5 – Localizing content

Page 43

19. The Swedish version of the Alloy Meet page does show blocks (in English), as shown in the

following screenshot:

Localizing content areas and blocks

ProductPage inherits from StandardPage, which has a MainContentArea that is not localized (because the

property does not have [CultureSpecific] applied), so block references are shared by all language

branches.

1. Open ~/Models/Pages/StandardPage.cs. Note the MainContentArea is not culture specific, as

shown in the following code snippet:

public class StandardPage : SitePageData
{
 [Display(
 GroupName = SystemTabNames.Content,
 Order = 310)]
 [CultureSpecific]
 public virtual XhtmlString MainBody { get; set; }

 [Display(
 GroupName = SystemTabNames.Content,
 Order = 320)]
 public virtual ContentArea MainContentArea { get; set; }
}

2. Open ~/Models/Blocks/TeaserBlock.cs. Note the Heading, Text, and Image properties are

[CultureSpecific], as shown in the following code snippet:

[CultureSpecific]
[Required(AllowEmptyStrings = false)]
[Display(
 GroupName = SystemTabNames.Content,
 Order = 1)]
public virtual string Heading { get; set; }

3. Edit the site and switch to the Swedish version of the Alloy Meet page.

Copyright © Episerver AB. All rights reserved.

Exercise A5 – Localizing content

Page 44

4. In the Assets pane, view Blocks, open the Alloy Meet folder, and edit the Customer testimonial wide

teaser block, as shown in the following screenshot:

5. Translate the block into Swedish, as shown in the following screenshot:

6. Publish the Swedish version of the block.

7. View the site as a visitor. Note the block is translated for Swedish page.

Configuring the site to detect language preference from the browser

1. In Google Chrome, choose Settings, and search for lang, as shown in the following screenshot:

Copyright © Episerver AB. All rights reserved.

Exercise A5 – Localizing content

Page 45

2. Click Language and input settings…, add Swedish and drag and drop it to the top of the list, as

shown in the following screenshot:

3. Click Done, and close the Settings tab.

4. View the Start page as a visitor without a language code in the address bar, and the visitor sees

the English version of the page, even though the browser is asking for Swedish, as shown in the

following screenshot:

5. Log in and navigate to CMS | Admin | Config | System Settings.

6. Check the Detect language via browser’s language preference box, and click Save, as shown in the

following screenshot:

7. View the site as a visitor again, this time you see Swedish by default, as shown in the following

screenshot:

Copyright © Episerver AB. All rights reserved.

Exercise A5 – Localizing content

Page 46

8. All links from the Start page will include /sv/ to request Swedish pages, as shown in the following

screenshot:

Optional: Automatically translating content using Episerver Languages

Episerver Languages add-on provides easy access to a single interface for managing multiple languages

and translations of content, with a built-in feature for automated translation. No additional license fee is

required for the add-on, and Microsoft Azure Translator Text API can translate 2 million characters per

month for free. It is an example of an add-on that registers itself as a gadget that can then be added to

either the Navigation or the Assets panes.

1. Open the solution with the AlloyDemo project.

2. Navigate to Tools | NuGet Package Manager | Package Manager Console.

3. Enter the following command:

Install-Package -ProjectName AlloyDemo EPiServer.Labs.LanguageManager

4. Start the site, and log in as Admin.

5. Navigate to CMS | Edit.

6. In the Navigation pane, on the Settings menu, click Add Gadgets, as shown in the following

screenshot:

7. In the Gadgets picker, click Languages.

Copyright © Episerver AB. All rights reserved.

Exercise A5 – Localizing content

Page 47

8. The Languages gadget will be added to the bottom of the Navigation pane, as shown in the

following screenshot:

9. Sign in to the Azure portal with a Microsoft Azure account: http://portal.azure.com

10. Click + to create a new service, and search for Translator Text API, as shown in the following

screenshot:

11. Read the description, and then click Create.

12. Set the following options:

• Name: EpiserverLanguages

• Pricing tier: F0 (2M Characters translated per month)

13. Click Create.

14. Navigate to the EpiserverLanguages service, as shown in the following screenshot:

15. Click Show access keys…

Copyright © Episerver AB. All rights reserved.

Exercise A5 – Localizing content

Page 48

16. In the Manage keys blade, click the copy button next to one of the two keys, as shown in the

following screenshot:

17. In the Languages gadget, click the Settings menu, and click Manage Add-on Settings, as shown in

the following screenshot:

18. In Admin view, in Language Manager, set Translator Provider to Bing Translate, and paste the key

for the Subscription Key, as shown in the following screenshot:

19. Click Save.

20. Navigate to Edit view and select About us in the Pages tree.

Copyright © Episerver AB. All rights reserved.

Exercise A5 – Localizing content

Page 49

21. In Languages, for svenska, click Create, and then Auto-translate from English, as shown in the

following screenshot:

22. After a few seconds, any properties that are culture specific will be translated automatically, as

shown in the following screenshot:

23. Publish the Swedish page.

24. In Azure portal, note the Monitoring section, as shown in the following screenshot:

25. Review the Episerver Languages User Guide online:

http://webhelp.episerver.com/latest/addons/languages.htm

Copyright © Episerver AB. All rights reserved.

Exercise A5 – Localizing content

Page 50

Localizing the TinyMCE toolbar styles drop-down list

1. Open the solution with the AlloyDemo

project.

2. Start the site, and log in as Admin.

3. Edit the Alloy Plan product page and

click inside the Main body property to

see the TinyMCE toolbar.

4. Click the Styles drop-down list box, and

note the two named styles, Header 2

and Header 3, as shown in the

screenshot:

Switching to Swedish

1. In the Global menu, click Admin, and then My Settings, as shown:

2. Click the Display Options tab. The Admin user has their Personal Language set to Use system

language, which on my laptop, is English.

3. Change the language to Svenska and click Save, as shown in the following screenshot:

4. After a few seconds, the page refreshes, and shows all labels in Swedish.

5. Switch to Edit view, and navigate to CMS | Redigera, as shown in the following screenshot:

6. Click in the Main body again and note that the label Styles has been

localized into Swedish as Stilar, but the two choices, Heading 2 and

Heading 3, have not, as shown in the screenshot:

7. Close the browser.

Localizing styles

1. In Solution Explorer, open ~/Static/css/editor.css. This is the file that is used by TinyMCE to

configure its options. The path to this file can be set through the Admin view or by editing the

Web.config <episerver><applicationSettings uiEditorCssPaths="..." /> attribute.

2. Add two additional menu names, Introduction and Alert Box, and add a menu title, Headings, as

shown in the following CSS:

p.introduction {
 ChangeElementType: true; /* allows change of element, i.e. h1 to p*/

Copyright © Episerver AB. All rights reserved.

Exercise A5 – Localizing content

Page 51

 EditMenuName: Introduction;
}

.alert-info {
 EditMenuName: Alert Box;
}

h2 {
 EditMenuTitle: Headings;
 EditMenuName: Header 2;
}

h3 {
 EditMenuName: Header 3;
}

.alert-info {
 background-color: #FFF8AA;
 border-color: #858585;
 color: #000000;
 font-family: Verdana;
 font-size: 12px;
}

.header.dim {
 margin: 2% 0;
 opacity: 0.3;
}

3. In ~/Resources/LanguageFiles, add a new XML file named TinyMCE.xml.

4. Modify its content as shown in the following markup, and note that where an edit menu name had

a space in the CSS, it has been replaced with an underscore in the matching XML element name:

<?xml version="1.0" encoding="utf-8" ?>
<languages>
 <language name="English" id="en">
 <editorstyleoptions>
 <introduction>Introduction</introduction>
 <alert_box>Alert Box</alert_box>
 <headings>Headings</headings>
 <header_2>Heading 2</header_2>
 <header_3>Heading 3</header_3>
 </editorstyleoptions>
 </language>
 <language name="Svenska" id="sv">
 <editorstyleoptions>
 <introduction>Introduktion</introduction>
 <alert_box>Varningsruta</alert_box>
 <headings>Rubrikerna</headings>
 <header_2>Rubrik 2</header_2>
 <header_3>Rubrik 3</header_3>
 </editorstyleoptions>
 </language>
</languages>

5. Start the website, and log in as Admin.

Copyright © Episerver AB. All rights reserved.

Exercise A5 – Localizing content

Page 52

6. Edit Alloy Plan, and click the styles drop-down, as shown in the following screenshot:

Although the names of the styles in the drop-down list, the Publish button and the blue information

message have been localized into Swedish, the content types and their properties have not.

If the editor has chosen Swedish as their personal language and they edit the product page in All Properties

view, Episerver localizes as much of the user experience labelling as possible, but it cannot automatically

localize things like the page type name, custom group (tab) names like SEO, and custom property names

like Title and Keywords, as shown in the following screenshot:

Defining the localization text values

1. In ~/Resources/LanguageFiles, copy and paste ContentTypeNames.xml by pressing Ctrl + C, then

Ctrl + V.

2. Rename the copied file to ContentTypesNames-sv.xml.

3. Find the <language> element and modify it as follows:

<language name="Svenska" id="sv">

4. Find the <productpage> element and modify it as follows:

<productpage>
 <name>Produkt</name>
 <description>Används för att presentera en specifik produkt</description>
</productpage>

5. In ~/Resources/LanguageFiles, copy and paste PropertyNames.xml.

6. Rename the copy to PropertyNames-sv.xml.

7. Find the <language> element and modify it as follows:

<language name="Svenska" id="sv">

8. Find the <meta…> elements and modify them as follows:

<metadescription>
 <caption>Sidbeskrivning</caption>
 <help>Används som meta beskrivning och allmänt som en ingress</help>

Copyright © Episerver AB. All rights reserved.

Exercise A5 – Localizing content

Page 53

</metadescription>
<metakeywords>
 <caption>Nyckelord</caption>
</metakeywords>
<metatitle>
 <caption>Titel</caption>
</metatitle>

9. In ~/Resources/LanguageFiles, copy and paste GroupNames.xml.

10. Rename the copy to GroupNames-sv.xml. Modify it as follows.

<?xml version="1.0" encoding="utf-8" ?>
<languages>
 <language name="Svenska" id="sv">
 <headings>
 <heading name="Contact">
 <description>Kontakta</description>
 </heading>
 <heading name="Default">
 <description>Standard</description>
 </heading>
 <heading name="News">
 <description>Nyheter</description>
 </heading>
 <heading name="Products">
 <description>Produkter</description>
 </heading>
 <heading name="MetaData">
 <description>Sökmotoroptimering</description>
 </heading>
 <heading name="SiteSettings">
 <description>Webbplatsinställningar</description>
 </heading>
 <heading name="Specialized">
 <description>Specialiserad</description>
 </heading>
 </headings>
 </language>
</languages>

Viewing the localizations

1. Start the site, and log in as Admin.

2. Edit the Alloy Plan page, and switch to All Properties view.

3. Note the parts of the user interface that are now localized into Swedish that weren’t before: the

page type, the group name/tab, and the property names, as highlighted in the following

screenshot:

Copyright © Episerver AB. All rights reserved.

Exercise A5 – Localizing content

Page 54

4. Close the browser.

Optional task: Localizing all content types and property names

Use Google (or Bing) translation to localize more of the content types and their property names.

Localizing views for visitors

1. In the AlloyDemo project, expand the Resources/LanguageFiles folder, and open Views.xml.

2. Add an element inside the <language name="English" id="en"> element, as shown in bold in

the following markup:

<language name="English" id="en">
 <productpage>
 <changed>Changed:</changed>
 </productpage>

3. After the closing language element, add a new language element for the Swedish translation, as

shown in the following markup:

<language name="Swedish" id="sv">
 <productpage>
 <changed>ändrats:</changed>
 </productpage>
</language>

4. In the AlloyDemo project, expand the Views/ProductPage folder, and open Index.cshtml.

5. Inside the <h1> element that outputs the name of the page, add a <small> element that outputs

the Changed property formatted as a long date string, as shown in the following markup:

<h1 @Html.EditAttribtes(x => x.CurrentPage.PageName)>
 @Model.CurrentPage.PageName
 <small>@Html.Translate("/productpage/changed")
 @(Model.CurrentPage.Changed.ToLongDateString())</small>
</h1>

6. Start the site, navigate to Alloy Meet page, and note the Changed output is translated and

formatted using US English culture, as shown in the following screenshot:

7. Change to the Swedish site, and note the Changed date is translated and formatted using English

format, as shown in the following screenshot:

8. Close the browser.

Copyright © Episerver AB. All rights reserved.

Exercise A6 – Resetting the Admin account

Page 55

Exercise A6 – Resetting the Admin account

In this exercise, you will add functionality to reset the Admin account (if necessary).

Prerequisites: complete Exercise A1.

Adding the reset admin feature

1. If you haven’t done so already, extract the folders and files in cmsdevfun_exercisefiles.zip.

2. Drag and drop the \cmsdevfun-exercisefiles\Module A\A6\Features\ folder into the AlloyDemo

project.

3. Expand the Features folder and review the files included, as shown in

the following screenshot:

a. ResetAdmin.cs: a static class to enable the feature.

b. ResetAdmin.cshtml: a Razor file for the user interface of the

feature.

c. ResetAdminController.cs: a controller that performs the work

of the feature.

4. Open ResetAdminController.cs file and modify the username and password if you want.

5. Open the Startup.cs-changes.txt file and copy and paste the statements into the appropriate place

in the Startup.cs file.

Resetting the admin account

1. Start the AlloyDemo website.

2. On the Reset Admin page, click Yes, do it!, as shown in the following screenshot:

Copyright © Episerver AB. All rights reserved.

Exercise A6 – Resetting the Admin account

Page 56

3. On the Reset Admin page, click Log me in to Episerver CMS, as shown in the following screenshot:

4. Log in using the new username and password.

5. Close the browser.

Disabling admin reset

1. Open the Startup.cs file.

2. Comment out or delete the statement that calls UseResetAdmin().

3. Save changes and close the file.

Copyright © Episerver AB. All rights reserved.

Exercise A7 – Identifying website features

Page 57

Exercise A7 – Identifying website features

In this exercise, you will identify the features that existing Episerver websites have implemented.

Prerequisites: none.

Choose one of the following public websites created with Episerver CMS, and identify the following features:

• Identify what markup is part of a shared layout.

• Identify at least three page types and list their likely properties including data types.

• Identify at least three block types and list their likely properties including data types.

• Identify at least one interactive feature, like a form that the visitor can interact with.

Episerver websites

• https://www.roehampton.ac.uk/

• https://www.mazdausa.com/

• https://www.absolut.com/

• https://www.wexphotovideo.com/

• https://www.southwesternrailway.com/

• https://www.gatwickairport.com/

https://www.roehampton.ac.uk/
https://www.mazdausa.com/
https://www.absolut.com/
https://www.wexphotovideo.com/
https://www.southwesternrailway.com/
https://www.gatwickairport.com/

Copyright © Episerver AB. All rights reserved.

Exercise B1 – Setting up the AlloyTraining website

Page 58

Module B – Defining Content Types

Goal

The overall goal of the exercises in this module is to implement typical examples of content types with

templates and layouts while following good practice. You will:

1. Set up an Empty Episerver website and define a Start page type with a page template.

2. Define media types to handle generic files, image files, and SVG files.

3. Create shared layouts for page templates, follow good practice to define a base page type and a base

page controller that uses constructor parameter injection for dependencies, and define a page view

model for use in layouts, views, and controllers.

4. Define a Standard page with a MainBody property and an alternative layout, a Product page with

UniqueSellingPoints property and a nested layout, and add a navigation menu to the root layout.

Exercise B1 – Setting up the AlloyTraining website

In this exercise, you will set up an Empty Episerver website and update it to use the latest version of

Episerver CMS. You will:

• Add Bootstrap files.

• Add helper classes used in later exercises to save you time.

• Define a Start page type.

• Create a page template for the Start page type.

• Localize the Start page type for editors who speak Swedish but not English

Prerequisites: Microsoft Visual Studio 2015 or later with Episerver CMS Visual Studio Extension.

Creating AlloyTraining from the Empty Episerver Web Site project template

1. In Visual Studio, open your previous solution, and navigate to File | Add | New Project…

2. In the left section, navigate to Installed | Templates | Visual C# | Episerver.

3. In the middle section, select Episerver Web Site project, and enter the following options:

• Name: AlloyTraining

• Target: .NET Framework 4.6.1 or later compatible version.

4. Click OK.

5. Choose the Empty template, as shown in the screenshot, and click

OK.

6. In Solution Explorer, right-click Solution 'Training' and click Set

StartUp Projects.

7. Click Current selection, and then click OK.

Copyright © Episerver AB. All rights reserved.

Exercise B1 – Setting up the AlloyTraining website

Page 59

Installing some add-ons and updating the Episerver NuGet packages and database

1. In Visual Studio, navigate to Tools | NuGet Package Manager | Package Manager Console.

2. In Package Manager Console, set these two options:

a. Package source: All

b. Default project: AlloyTraining

3. Enter the following command to install Episerver Search indexing service:

Install-Package -ProjectName AlloyTraining EPiServer.Search

4. Enter the following command to install Episerver Search integration with CMS:

Install-Package -ProjectName AlloyTraining EPiServer.Search.Cms

5. Enter the following command to install Episerver Forms:

Install-Package -ProjectName AlloyTraining EPiServer.Forms

6. Enter the following command to update all packages using restrictions defined in packages.config:

Update-Package -ProjectName AlloyTraining -ToHighestMinor

7. In Package Manager Console, set these two options:

a. Package source: All

b. Default project: AlloyTraining

8. Enter the following command to update the CMS database:

Update-EPiDatabase

9. If you see an error message, as shown in the following screenshot, then close Visual Studio,

restart, reopen the solution, select the correct Default project, and try again:

Reviewing authentication and authorization in an Episerver CMS Empty site

You will not make any changes in this task; you are only reviewing the default configuration.

1. In the AlloyTraining project, open ~/Web.config.

2. Find the <authentication> element, as shown in the following configuration:

<authentication mode="Forms">
 <forms name=".EPiServerLogin"

Copyright © Episerver AB. All rights reserved.

Exercise B1 – Setting up the AlloyTraining website

Page 60

 loginUrl="Util/login.aspx"
 timeout="120"
 defaultUrl="~/" />
</authentication>

3. Find the <membership> and <rolemanager> elements, as partially shown in the following

configuration:

<membership defaultProvider="MultiplexingMembershipProvider" ...>
 <providers>
 <clear />
 <add name="MultiplexingMembershipProvider" ...
 provider1="SqlServerMembershipProvider"
 provider2="WindowsMembershipProvider" />
 <add name="WindowsMembershipProvider" ... />
 <add name="SqlServerMembershipProvider" ...
 connectionStringName="EPiServerDB" ...
 minRequiredPasswordLength="6"
 minRequiredNonalphanumericCharacters="0" ... />
 </providers>
</membership>
<roleManager enabled="true"
 defaultProvider="MultiplexingRoleProvider"
 cacheRolesInCookie="true">
 <providers>
 <clear />
 <add name="MultiplexingRoleProvider" ...
 provider1="SqlServerRoleProvider"
 provider2="WindowsRoleProvider" ... />
 <add name="WindowsRoleProvider" ... />
 <add name="SqlServerRoleProvider" ...
 connectionStringName="EPiServerDB" applicationName="/" />
 </providers>
</roleManager>

Adding Bootstrap and Business logic

1. If you haven’t already, then extract the folders and files in cmsdevfun_exercisefiles.zip.

2. Drag and drop, or copy, the Business and Static folders from \cmsdevfun-exercisefiles\Module

B\B1 to the root of the AlloyTraining project, as shown in the following screenshot:

Copyright © Episerver AB. All rights reserved.

Exercise B1 – Setting up the AlloyTraining website

Page 61

3. In Solution Explorer, expand the Business and Static folders, as shown in the following screenshot:

4. Note the following folders and files were added:

• Extension methods for use later in the exercises to generate menus and so on.

• Initialization module for registering an Admin user account if using SQL Server provider.

• Static application files for stylesheets, JavaScript libraries, and graphics.

5. Click Build | Build Solution to ensure the website compiles.

Testing the Empty Episerver website

1. In Solution Explorer, click AlloyTraining.

2. Start the website by navigating to Debug | Start Without Debugging or press Ctrl + F5.

3. You will see a HTTP 404 error message, as shown in the following screenshot:

4. Enter /EPiServer/CMS/ at the end of the address box, as shown in the following screenshot:

Copyright © Episerver AB. All rights reserved.

Exercise B1 – Setting up the AlloyTraining website

Page 62

5. Log in using a local Windows account that is a member of the local Windows group named

Administrators. If you don’t have a local Windows account, move on to the next task.

 ™ 😉

If you can’t authenticate with a Windows account or you don’t want to

If you do not have a local Windows account that is a member of the local Windows group named

Administrators or if you see the following error message, then you can add a setting to Web.config to create

a SQL-stored account instead:

A good reason to avoid Windows accounts is to remove dependencies. If your project stores users in the

CMS database it can easily be moved to another computer without having to configure Windows accounts.

1. In AlloyTraining, open Web.config.

2. Add an entry to <appSettings>, as shown in the following markup:

<add key="alloy:RegisterAdmin" value="true" />

Copyright © Episerver AB. All rights reserved.

Exercise B1 – Setting up the AlloyTraining website

Page 63

3. Find the <membership> element and set the defaultProvider to SqlServerMembershipProvider, as

shown in the following markup:

<membership defaultProvider="SqlServerMembershipProvider" ...

4. Find the <roleManager> element and set the defaultProvider to SqlServerRoleProvider, as shown

in the following markup:

<roleManager enabled="true" defaultProvider="SqlServerRoleProvider" ...

5. Save and close Web.config.

6. In AlloyTraining, open ~\Business\Initialization\RegisterAdminInitializationModule.cs.

7. Review the file to understand what it does, as shown in the following code:

using EPiServer.Core;
using EPiServer.DataAbstraction;
using EPiServer.Framework;
using EPiServer.Framework.Initialization;
using EPiServer.Security;
using System.Configuration;
using System.Web.Security;

namespace AlloyTraining.Business.Initialization
{
 [InitializableModule]
 [ModuleDependency(typeof(EPiServer.Web.InitializationModule))]
 public class RegisterAdminInitializationModule : IInitializableModule
 {
 private const string roleName = "WebAdmins";
 private const string userName = "Admin";
 private const string password = "Pa$$w0rd";
 private const string email = "admin@alloy.com";

 public void Initialize(InitializationEngine context)
 {
 string enabledString =
 ConfigurationManager.AppSettings["alloy:RegisterAdmin"];
 bool enabled;
 if (bool.TryParse(enabledString, out enabled))
 {
 if (enabled)
 {
 #region Use ASP.NET Membership classes to create the role and user

 // if the role does not exist, create it
 if (!Roles.RoleExists(roleName))
 {
 Roles.CreateRole(roleName);
 }

 // if the user already exists, delete it
 MembershipUser user = Membership.GetUser(userName);
 if (user != null)
 {
 Membership.DeleteUser(userName);
 }

 // create the user with password and add it to role
 Membership.CreateUser(userName, password, email);
 Roles.AddUserToRole(userName, roleName);

 #endregion

Copyright © Episerver AB. All rights reserved.

Exercise B1 – Setting up the AlloyTraining website

Page 64

 #region Use EPiServer classes to give full access to root of
content tree

 var security = context.Locate.Advanced
 .GetInstance<IContentSecurityRepository>();

 IContentSecurityDescriptor permissions = security
 .Get(ContentReference.RootPage)
 .CreateWritableClone() as IContentSecurityDescriptor;

 permissions.AddEntry(new AccessControlEntry(
 roleName, AccessLevel.FullAccess));

 security.Save(ContentReference.RootPage,
 permissions, SecuritySaveType.Replace);

 permissions = security
 .Get(ContentReference.WasteBasket)
 .CreateWritableClone() as IContentSecurityDescriptor;

 permissions.AddEntry(new AccessControlEntry(
 roleName, AccessLevel.FullAccess));

 security.Save(ContentReference.WasteBasket,
 permissions, SecuritySaveType.Replace);

 #endregion
 }
 }
 }

 public void Uninitialize(InitializationEngine context) { }
 }
}

8. Start the site, enter /EPiServer/CMS/, and confirm that you can log in as a CMS admin.

9. Close the browser.

10. In AlloyTraining, open Web.config.

11. Modify the entry in <appSettings> to disable the registration of Admin, as shown in the following

markup:

<add key="alloy:RegisterAdmin" value="false" />

12. Save and close Web.config.

Defining a class of string constants for grouping content types and a Start page type

Content types can be grouped when shown as a list for the editors. You will start by defining a static class

with string constants for the group names you will use in your site.

1. In Solution Explorer, right-click AlloyTraining project, and click Add | New Item…, or press Ctrl +

Shift + A.

2. In Add New Item - AlloyTraining, navigate to Installed | Visual C# | Code, choose Class, enter

SiteGroupNames.cs for the name, and click Add.

3. Modify the file, as shown in the following code:

namespace AlloyTraining

Copyright © Episerver AB. All rights reserved.

Exercise B1 – Setting up the AlloyTraining website

Page 65

{
 public static class SiteGroupNames
 {
 public const string Specialized = "Specialized";
 public const string Common = "Common";
 public const string News = "News";
 }
}

4. In AlloyTraining, expand Models, right-click Pages, and click Add | New Item…, or press Ctrl + Shift

+ A.

5. In Add New Item - AlloyTraining, navigate to Installed | Visual C# | Episerver, choose Page Type,

enter StartPage.cs for the name, and click Add.

6. In the [ContentType] attribute, change the DisplayName to Start.

7. In the [ContentType] attribute, set the GroupName to SiteGroupNames.Specialized and the sort

index (i.e. Order) within that group to 10.

8. In the [ContentType] attribute, set the Description of “The home page for a website with an area

for blocks and partial pages.”

9. In the body of the class, uncomment the MainBody property with all its attributes and change its

Order to 20.

10. Add a string Heading property with appropriate attribute values. Order values are used to sort

properties within a tab group. It is good practice to use multiples of ten so that future properties

can be added between existing ones.

Your complete page type class should look something like the following code:

using EPiServer.Core;
using EPiServer.DataAbstraction;
using EPiServer.DataAnnotations;
using System.ComponentModel.DataAnnotations;

namespace AlloyTraining.Models.Pages
{
 [ContentType(DisplayName = "Start",
 // your code will have a random GUID here
 GroupName = SiteGroupNames.Specialized, Order = 10,
 Description = "The home page for a website with an area for blocks and partial
pages.")]
 public class StartPage : PageData
 {
 [CultureSpecific]
 [Display(Name = "Heading", Description =
 "If the Heading is not set, the page falls back to showing the Name.",
 GroupName = SystemTabNames.Content, Order = 10)]
 public virtual string Heading { get; set; }

 [CultureSpecific]
 [Display(Name = "Main body",
 Description = "The main body will be shown in the main content area of the
page, using the XHTML-editor you can insert for example text, images and tables.",
 GroupName = SystemTabNames.Content, Order = 20)]
 public virtual XhtmlString MainBody { get; set; }
 }
}

Copyright © Episerver AB. All rights reserved.

Exercise B1 – Setting up the AlloyTraining website

Page 66

Creating a Start page instance

1. Start the website by navigating to Debug | Start Without Debugging or press Ctrl + F5.

2. Enter /EPiServer/CMS/ at the end of the address box.

3. Log in as a CMS admin, for example, CMSUser or Admin.

4. Navigate to CMS | Admin | Content Type, click Start, and note that the synchronization process

has registered your page type, including its properties, as shown in the following screenshot:

5. Navigate to CMS | Edit.

6. Navigation pane shows only a Root page, as shown in the following screenshot:

7. Click +, and then click New Page, as shown in the following screenshot:

Copyright © Episerver AB. All rights reserved.

Exercise B1 – Setting up the AlloyTraining website

Page 67

8. Enter the name Start, and then click OK.

9. Note the following:

a. Pencil icon indicates a saved draft, so the page is not published yet, and it won’t be visible to

visitors, and the person icon can be hovered over to show who is editing the page.

b. Blue information icon warns that you must publish this page for visitors to see changes.

c. The two custom properties, Heading and MainBody, are grouped and sorted under the Content

tab in All Properties view, as shown in the following screenshot:

10. Enter values for Heading and Main body. Be creative!

11. Click the Publish? button, and then click the green Publish button.

12. Navigate to CMS | Admin | Config | Manage Websites, and click Add Site, as shown in the

following screenshot:

13. Enter the following details, as shown in the following screenshot:

a. Name: AlloyTraining

a.

b.

c.

Copyright © Episerver AB. All rights reserved.

Exercise B1 – Setting up the AlloyTraining website

Page 68

b. URL: [copy from browser address box]

c. Start page: click […] to select the Start page you just created.

d. Use site-specific assets: checked

14. Click Save.

15. Switch to Edit view and note that the Start page now shows a

“house” icon and the Global menu has a “globe” to switch to Live

view, as shown in the screenshot.

16. Switch to Live view and note that the Start page still returns a 404

because it does not yet have a template.

17. Close the browser.

Creating a Start page template

1. In AlloyTraining, expand Controllers, and right-click and choose Add | New Item…, or press Ctrl +

Shift + A.

2. In Add New Item - AlloyTraining, navigate to Installed | Visual C# | Episerver, choose Page

Controller (MVC), enter StartPageController.cs for the name, and click Add, as shown in the

following screenshot:

Copyright © Episerver AB. All rights reserved.

Exercise B1 – Setting up the AlloyTraining website

Page 69

3. Fix the compilation error by clicking the light bulb, and choose the option to import the

AlloyTraining.Models.Pages namespace, as shown in the following screenshot:

4. In AlloyTraining, right-click Views, and add a new folder named StartPage.

5. Right-click StartPage, and choose Add | New Item…, or press Ctrl + Shift + A.

6. In Add New Item - AlloyTraining, navigate to Installed | Visual C# | Episerver, choose Page Partial

View (MVC Razor), enter Index.cshtml for the name, and click Add, as shown in the following

screenshot:

7. Change the @model to use the correct page type, as shown in the following code:

@model AlloyTraining.Models.Pages.StartPage

8. Add an <h1> element to output the Heading if it exists, otherwise fall back to the Name, as shown

in the following markup:

<h1 @Html.EditAttributes(m => m.Heading)>
 @(Model.Heading ?? Model.Name)
</h1>

 EditAttributes() PropertyFor()

Copyright © Episerver AB. All rights reserved.

Exercise B1 – Setting up the AlloyTraining website

Page 70

9. Start the website, and note the page template is used to render the Start page, as shown in the

following screenshot:

10. Enter /EPiServer/CMS/ at the end of the address box, and log in as a CMS admin.

11. Navigate to CMS | Edit., and note the On-Page Editing (OPE) experience due to the page template

and use of PropertyFor and EditAttributes in the view, as shown in the following screenshot:

12. Verify that the on-page edit logic for the <h1> tag works, i.e. that when you edit the text it is the

Heading property value that is updated, and that when a value exists for Heading it is that value

that is rendered to the visitor, otherwise the Name is rendered.

13. Empty the Heading property value and publish the change to verify that the fallback works, i.e. that

the page name is displayed to the visitor and to the editor.

14. Close the browser.

Localizing to the Swedish language for the Start page and its properties

1. Drag and drop or copy the Resources folder from \cmsdevfun-exercisefiles\Module B\B1 to the

root of the AlloyTraining project.

2. Expand the folder named ~\Resources\LanguageFiles\ and open the file named

ContentTypes.xml, and note its contents, as shown in the following markup:

<?xml version="1.0" encoding="utf-8" ?>
<languages>
 <language name="English" id="en">
 <contenttypes>
 <startpage>
 <name>Start</name>
 <description>The home page for a website with an area for blocks and partial
pages.</description>
 <properties>
 <heading>
 <caption>Heading</caption>
 <help>If the Heading is not set, the page falls back to showing the
Name.</help>
 </heading>
 <mainbody>
 <caption>Main body</caption>

Copyright © Episerver AB. All rights reserved.

Exercise B1 – Setting up the AlloyTraining website

Page 71

 <help>The main body will be shown in the main content area of the page,
using the XHTML-editor you can insert for example text, images and tables.</help>
 </mainbody>
 </properties>
 </startpage>
 </contenttypes>
 </language>
 <language name="Svenska" id="sv">
 <contenttypes>
 <startpage>
 <name>Start</name>
 <description>Hemsidan för en webbplats med ett område för block och
sidor.</description>
 <properties>
 <heading>
 <caption>Rubrik</caption>
 <help>Om rubriken inte är inställd, faller sidan tillbaka för att visa
namnet.</help>
 </heading>
 <mainbody>
 <caption>Huvudkroppen</caption>
 <help>Huvudkroppen kommer att visas i huvudinnehållet på sidan med hjälp
av XHTML-redigeraren som du kan infoga tex, bilder och tabeller.</help>
 </mainbody>
 </properties>
 </startpage>
 </contenttypes>
 </language>
</languages>

3. Open Web.config.

4. In the <episerver.framework> element, add the following markup:

<localization fallbackBehavior="Echo, MissingMessage, FallbackCulture"
fallbackCulture="en">
 <providers>
 <add virtualPath="~/Resources/LanguageFiles" name="languageFiles"
 type="EPiServer.Framework.Localization.XmlResources
 .FileXmlLocalizationProvider, EPiServer.Framework.AspNet" />
 </providers>
</localization>

Testing the localization

1. Start AlloyTraining by navigating to Debug | Start Without Debugging or press Ctrl + F5.

2. Enter /EPiServer/CMS/ at the end of the address box, and log in.

3. In the Global menu, click your user name menu, and then My Settings, as shown in the following

screenshot:

Copyright © Episerver AB. All rights reserved.

Exercise B1 – Setting up the AlloyTraining website

Page 72

4. Click the Display Options tab. The Admin user has their Personal Language set to Use system

language, which on my laptop, is English. Change the language to Svenska and click Save, as

shown in the following screenshot:

5. Edit the Start page, switch to All Properties view, and note the property names and tool tips of your

custom Heading/Rubrik and Main body/Huvudkroppen have been localized into Swedish, as

shown in the following screenshot:

6. Switch to on-page editing and note the same:

7. Pull down the Global menu, click your user name menu, click Mina installningar, click

Visningsalternativ, and switch back to Anvand systemsprak, as shown in the following screenshot:

8. Close the browser.

Copyright © Episerver AB. All rights reserved.

Exercise B2 – Managing media assets

Page 73

Exercise B2 – Managing media assets

In this exercise, you will define some media types to enable files to be uploaded.

Prerequisites: complete Exercise B1.

Enabling upload of any file by defining a media type

Before uploading files, a little code is needed for the system to be able to recognize media.

1. In AlloyTraining, expand Models, right-click Media, and click Add | New Item…, or press Ctrl + Shift

+ A.

2. In Add New Item - AlloyTraining, navigate to Installed | Visual C# | Episerver, choose Media Type,

enter AnyFile.cs for the name, and click Add.

3. Change the DisplayName to Any File.

4. Add a Description of “Use this to upload any type of file.”

5. Delete the commented example property and the commented MediaDescriptor attribute.

Your code should look something like the following:

using EPiServer.Core;
using EPiServer.DataAbstraction;
using EPiServer.DataAnnotations;

namespace AlloyTraining.Models.Media
{
 [ContentType(DisplayName = "Any File",
 // your code will have a GUID
 Description = "Use this to upload any type of file.")]
 public class AnyFile : MediaData
 {
 }
}

Uploading files

1. Start the AlloyTraining website, and log in as a CMS Admin.

2. Navigate to CMS | Admin | Content Type, and select Any File, as shown in the following

screenshot:

3. Navigate to CMS | Edit.

Copyright © Episerver AB. All rights reserved.

Exercise B2 – Managing media assets

Page 74

4. In Assets pane, create a folder named Documents in For This Site, as shown in the following

screenshot:

5. Click Media and select the Documents folder.

6. Start File Explorer.

7. From the folder \cmsdevfun-exercisefiles\Assets\Documents, drag and drop SurfaceRT.png,

EditorialTexts.txt, and Translations.pdf into the Documents folder, as shown in the following

screenshots:

8. Leave the browser running, and in Visual Studio, in Solution Explorer, expand the App_Data folder,

toggle Show All Files, refresh to show the blobs folder, and note that each uploaded file has its own

folder that matches a content GUID in the CMS database, and a file for a version, as shown in the

following screenshot:

Copyright © Episerver AB. All rights reserved.

Exercise B2 – Managing media assets

Page 75

9. Back in the browser, edit the Start page.

10. In the Main body, create a bulleted list, drag and drop the three files, and note that links to the

media files are created, and there is no special handling for images, as shown in the following

screenshot:

11. Publish the Start page.

12. Switch to Live view, and click on each link to see the effect for visitors, as shown in the following

screenshot:

Customize handling of images by defining an image type

Before uploading image files, a little code is needed for the system to be able to recognize images as a

special type of media and therefore customize how they are handled when dragged and dropped into a rich

text property.

1. In AlloyTraining, expand Models, right-click Media, and click Add | New Item…, or press Ctrl + Shift

+ A.

2. In Add New Item - AlloyTraining, navigate to Installed | Visual C# | Episerver, choose Media Type,

enter ImageFile.cs for the name, and click Add.

3. Modify the class to inherit from ImageData.

4. Change the DisplayName to Image File.

5. Add a Description of “Use this to upload image files.”

Copyright © Episerver AB. All rights reserved.

Exercise B2 – Managing media assets

Page 76

6. Uncomment the MediaDescriptor attribute and set the file extensions to: png,gif,jpg,jpeg

7. Uncomment the Description property and delete its Display attribute.

Your code should look something like the following:

using EPiServer.Core;
using EPiServer.DataAbstraction;
using EPiServer.DataAnnotations;
using EPiServer.Framework.DataAnnotations;
using System.ComponentModel.DataAnnotations;

namespace AlloyTraining.Models.Media
{
 [ContentType(DisplayName = "Image File",
 // your code will have a GUID
 Description = "Use this to upload image files.")]
 [MediaDescriptor(ExtensionString = "png,gif,jpg,jpeg")]
 public class ImageFile : ImageData
 {
 [CultureSpecific]
 [Editable(true)]
 public virtual string Description { get; set; }
 }
}

 ImageData MediaData

Enabling upload of SVG files by defining a media type

ImageData does not recognise Scalable Vector Graphics (SVG) files so we must define a separate content

type to handle them.

1. In AlloyTraining, expand Models, right-click Media, and click Add | New Item…, or press Ctrl + Shift

+ A.

2. In Add New Item - AlloyTraining, navigate to Installed | Visual C# | Episerver, choose Media Type,

enter SvgFile.cs for the name, and click Add.

3. Modify the class to inherit from ImageData.

4. Change the DisplayName to SVG File.

5. Add a Description of “Use this to upload Scalable Vector Graphic (SVG) images.”

6. Uncomment the MediaDescriptor attribute and set the file extensions to: svg

7. Delete the Description property and its Display attribute.

8. Override the Thumbnail property to return the BinaryData property.

Your code should look something like the following:

using EPiServer.Core;
using EPiServer.DataAbstraction;
using EPiServer.DataAnnotations;
using EPiServer.Framework.Blobs;
using EPiServer.Framework.DataAnnotations;

namespace AlloyDemo.Models.Media
{
 [ContentType(DisplayName = "SVG File",
 // your code will have a GUID
 Description = "Use this to upload Scalable Vector Graphic (SVG) images.")]
 [MediaDescriptor(ExtensionString = "svg")]
 public class SvgFile : ImageData
 {

Copyright © Episerver AB. All rights reserved.

Exercise B2 – Managing media assets

Page 77

 // instead of generating a smaller bitmap file for thumbnail,
 // use the same binary vector image for thumbnail
 public override Blob Thumbnail { get => base.BinaryData; }
 }
}

Uploading images

1. Start the AlloyTraining site, and log in as a CMS Admin.

2. Navigate to CMS | Edit.

3. In Assets pane, click Media, and create a folder named Products in For All Sites, as shown in the

following screenshot:

4. Upload images of the three products from cmsdevfun_exercisefiles.zip in the folder

\Assets\Products\ into the Products folder, as shown in the following screenshot:

 ImageData MediaData

Copyright © Episerver AB. All rights reserved.

Exercise B2 – Managing media assets

Page 78

5. Upload the file named paw.svg in the folder \Assets\Misc into the For All Sites folder, as shown in

the following screenshot:

6. Leave the browser running, and in Visual Studio, in Solution Explorer, in the App_Data folder,

refresh the blobs folder, and note that each uploaded product image has its own folder that

matches a content GUID in the CMS database, and a file for a version, and a file for a thumbnail,

as shown in the following screenshot:

7. Back in the browser, double-click each image in the Assets pane, switch to All Properties view, edit

the Name and Description properties, and then Publish them:

a. AlloyMeet.png:

Name: Alloy Meet, Description: Logo of the Alloy Meet product.

b. AlloyPlan.png:

Name: Alloy Plan, Description: Logo of the Alloy Plan product.

c. AlloyTrack.png:

Name: Alloy Track, Description: Logo of the Alloy Track product.

8. Edit the Start page.

9. Drag and drop one of the product images into the Main body and note the image renders as an

 element instead of a clickable hyperlink.

10. Select the image.

Copyright © Episerver AB. All rights reserved.

Exercise B2 – Managing media assets

Page 79

11. In the toolbar, click Insert/Edit Image, click Appearance, and change the height to 90, as shown in

the following screenshot:

12. Click Update.

13. Publish the Start page.

14. Switch to Live view, to view the page as a visitor.

15. Right-click the page and choose View page source.

16. Note the HTML generated for visitors, especially the URLs for the documents and images that you

uploaded as media assets, as shown in the following screenshot:

 /siteassets/
/globalassets/

Deleting referenced content

1. Switch to Edit view.

2. In Assets, on the Media tab, select the For All Sites/Products folder, double-click Alloy Meet to edit

it in All Properties view, and note the warning at the top that says it is referenced by one item, as

shown in the following screenshot:

3. In Assets, select the context menu for Alloy Meet, and choose Move to Trash, as shown in the

following screenshot:

Copyright © Episerver AB. All rights reserved.

Exercise B2 – Managing media assets

Page 80

4. Note the warning that this media is used on the Start page, as shown in the following screenshot:

5. Click Cancel.

6. Close the browser.

Copyright © Episerver AB. All rights reserved.

Exercise B3 – Implementing design patterns and conventions

Page 81

Exercise B3 – Implementing design patterns and conventions

In this exercise, you will create a layout file which will be used up by all page templates in the website, a

base page type that will be inherited from by all the page types in the site, a base page controller that will

be inherited from by all the page templates in the site, and a view model to make our Views and Layouts

more flexible.

• The layout will be named _Root.cshtml.

• The layout will be created in the folder ~\Views\Shared\Layouts and contain references to

Bootstrap files you added in Exercise B1.

• You will use IContentLoader to retrieve all pages on the level below the Start page in the page tree.

Prerequisites: complete Exercises B1 and B2.

Creating a page type base

This class will not be a page type, but it will serve as a base class that inherits and extends PageData.

1. In AlloyTraining, expand Models, right-click Pages, and click Add | New Item…, or press Ctrl + Shift

+ A.

2. In Add New Item - AlloyTraining, navigate to Installed | Visual C# | Code, choose Class, enter

SitePageData.cs for the name, and click Add.

3. Import the EPiServer.Core namespace.

4. Modify the class to be abstract and inherit from PageData.

5. Define five public virtual properties:

• MetaTitle: string

• MetaKeywords: string

• MetaDescription: string

• PageImage: ContentReference

• TeaserText: string

~\Views\Shared\Layouts_Root.cshtml

<head>

</head>

<body>

</body>

~\Views\StartPage\Index.cshtml

Copyright © Episerver AB. All rights reserved.

Exercise B3 – Implementing design patterns and conventions

Page 82

Applying property attributes

Before you add attributes, you will define some string constants to use in your site.

1. In AlloyTraining, right-click AlloyTraining project, and click Add | New Item…, or press Ctrl + Shift +

A.

2. In Add New Item - AlloyTraining, navigate to Installed | Visual C# | Code, choose Class, enter

SiteTabNames.cs for the name, and click Add.

3. Modify the file, as shown in the following code, and note the following:

• To see properties on the SEO tab, the user must have Edit access level (access right).

• To see properties on the Site Settings tab, the user must have Administer access level.

using EPiServer.DataAnnotations;
using EPiServer.Security;
using System.ComponentModel.DataAnnotations;

namespace AlloyTraining
{
 [GroupDefinitions]
 public static class SiteTabNames
 {
 [Display(Order = 10)] // to sort horizontal tabs
 [RequiredAccess(AccessLevel.Edit)]
 public const string SEO = "SEO";

 [Display(Order = 20)]
 [RequiredAccess(AccessLevel.Administer)]
 public const string SiteSettings = "Site Settings";
 }
}

4. In AlloyTraining, open SitePageData.cs.

5. Apply attributes to the properties to:

• Make the following properties support a plain text editor with multiple rows:

MetaDescription, TeaserText.

• Make PageImage property only able to point to images.

• Make the following properties support multiple language branches: MetaTitle,

MetaKeywords, MetaDescription, TeaserText.

• Make the following properties appear on the SEO tab: MetaTitle, MetaKeywords,

MetaDescription.

• Make the following properties appear on the Content tab: PageImage, TeaserText.

• Sort the properties within each tab appropriately.

• Limit the MetaTitle to between 5 and 60 characters (Google’s recommendation for page

titles to get good SEO).

Your complete class should look something like the following:

using EPiServer.Core;
using EPiServer.DataAbstraction;
using EPiServer.DataAnnotations;

Copyright © Episerver AB. All rights reserved.

Exercise B3 – Implementing design patterns and conventions

Page 83

using EPiServer.Web;
using System.ComponentModel.DataAnnotations;

namespace AlloyTraining.Models.Pages
{
 public abstract class SitePageData : PageData
 {
 [CultureSpecific]
 [Display(Name = "Meta title",
 GroupName = SiteTabNames.SEO, Order = 100)]
 [StringLength(60, MinimumLength = 5)]
 public virtual string MetaTitle { get; set; }

 [CultureSpecific]
 [Display(Name = "Meta keywords",
 GroupName = SiteTabNames.SEO, Order = 200)]
 public virtual string MetaKeywords { get; set; }

 [CultureSpecific]
 [Display(Name = "Meta description",
 GroupName = SiteTabNames.SEO, Order = 300)]
 [UIHint(UIHint.Textarea)] // multi-row text editor
 public virtual string MetaDescription { get; set; }

 [Display(Name = "Page image",
 GroupName = SystemTabNames.Content, Order = 100)]
 [UIHint(UIHint.Image)] // filters to only show images
 public virtual ContentReference PageImage { get; set; }

 [CultureSpecific]
 [Display(Name = "Teaser text",
 GroupName = SystemTabNames.Content, Order = 200)]
 [UIHint(UIHint.Textarea)]
 public virtual string TeaserText { get; set; }
 }
}

6. Drag and drop \cmsdevfun-exercisefiles\Module B\B3\Resources folder into AlloyTraining project.

Creating a view model interface

1. In AlloyTraining, right-click ~\Models\, and add a new folder named ViewModels.

2. Right-click ViewModels, and click Add | New Item…, or press Ctrl + Shift + A.

3. In Add New Item - AlloyTraining, navigate to Installed | Visual C# | Code, choose Interface, enter

IPageViewModel.cs for the name, and click Add.

4. Modify the interface to define a covariant generic type that derives from SitePageData, with read-

only properties named CurrentPage, StartPage, MenuPages, and Section, as shown in the

following code:

using AlloyTraining.Models.Pages;
using EPiServer.Core;
using System.Collections.Generic;

namespace AlloyTraining.Models.ViewModels
{
 public interface IPageViewModel<out T> where T : SitePageData

Copyright © Episerver AB. All rights reserved.

Exercise B3 – Implementing design patterns and conventions

Page 84

 {
 T CurrentPage { get; }
 StartPage StartPage { get; }
 IEnumerable<SitePageData> MenuPages { get; }
 IContent Section { get; }
 }
}

Creating a default view model class

1. In AlloyTraining, right-click ViewModels, and click Add | New Item…, or press Ctrl + Shift + A.

2. In Add New Item - AlloyTraining, navigate to Installed | Visual C# | Code, choose Class, enter

PageViewModel.cs for the name, and click Add.

3. Modify the class to implement the interface, as shown in the following code:

using System.Collections.Generic;
using AlloyTraining.Models.Pages;
using EPiServer.Core;

namespace AlloyTraining.Models.ViewModels
{
 public class PageViewModel<T>
 : IPageViewModel<T> where T : SitePageData
 {
 public T CurrentPage { get; set; }
 public StartPage StartPage { get; set; }
 public IEnumerable<SitePageData> MenuPages { get; set; }
 public IContent Section { get; set; }

 public PageViewModel(T currentPage)
 {
 CurrentPage = currentPage;
 }
 }

 public static class PageViewModel
 {
 public static PageViewModel<T> Create<T>(T currentPage)
 where T : SitePageData
 {
 return new PageViewModel<T>(currentPage);
 }
 }
}

 static PageViewModel static Create<T>()
PageViewModel

Creating site content icons

If you do not apply Episerver’s ImageUrl attribute, then when editors create new pages and blocks, a

missing icon is shown. You will create custom icons and apply them to your content types.

Copyright © Episerver AB. All rights reserved.

Exercise B3 – Implementing design patterns and conventions

Page 85

1. In AlloyTraining, copy the contenticons folder from

\cmsdevfun_exercisefiles\Module B\B3\Static to the Static folder

in AlloyTraining, as shown in the screenshot:

2. Right-click AlloyTraining, and click Add | New Item…, or press Ctrl +

Shift + A.

3. In Add New Item - AlloyTraining, navigate to Installed | Visual C# |

Code, choose Class, enter SiteContentIcons.cs for the name, and

click Add.

4. Modify the contents, as shown in the following code:

using EPiServer.DataAnnotations;

namespace AlloyTraining
{
 public class SiteImageUrlAttribute : ImageUrlAttribute
 {
 public SiteImageUrlAttribute()
 : base("~/Static/contenticons/epi-edu-icon.jpg") { }

 public SiteImageUrlAttribute(string path)
 : base(path) { }
 }

 public class SitePageIconAttribute : ImageUrlAttribute
 {
 public SitePageIconAttribute()
 : base("~/Static/contenticons/epi-edu-icon-page.jpg") { }
 }

 public class SiteBlockIconAttribute : ImageUrlAttribute
 {
 public SiteBlockIconAttribute()
 : base("~/Static/contenticons/epi-edu-icon-block.jpg") { }
 }

 public class SiteStartIconAttribute : ImageUrlAttribute
 {
 public SiteStartIconAttribute()
 : base("~/Static/contenticons/epi-edu-icon-start.jpg") { }
 }

 public class SiteSearchIconAttribute : ImageUrlAttribute
 {
 public SiteSearchIconAttribute()
 : base("~/Static/contenticons/epi-edu-icon-search.jpg") { }
 }

 public class SiteCommerceIconAttribute : ImageUrlAttribute
 {
 public SiteCommerceIconAttribute()
 : base("~/Static/contenticons/epi-edu-icon-commerce.jpg") { }
 }

 public class SiteContainerIconAttribute : ImageUrlAttribute
 {
 public SiteContainerIconAttribute()
 : base("~/Static/contenticons/epi-edu-icon-container.jpg") { }
 }
}

Copyright © Episerver AB. All rights reserved.

Exercise B3 – Implementing design patterns and conventions

Page 86

Modifying Start page to use the base classes

1. In AlloyTraining, open StartPage.cs.

2. Modify the class to (a) inherit from SitePageData and (b) apply the SiteStartIcon attribute, as

shown in the following code:

[ContentType(...)]
[SiteStartIcon]
public class StartPage : SitePageData

Creating a shared layout

1. In AlloyTraining, right-click ~\Views\Shared, and add a new folder named Layouts.

2. Drag and drop or copy the _Root.cshtml file from \cmsdevfun-exercisefiles\Module

B\B3\Views\Shared\Layouts folder to the same folder in AlloyTraining.

3. Open the _Root.cshtml file, as shown in the following markup, and note the following:

• The import of some namespaces for pages, view models and extension methods.

• @model directive allows any type that implements the view model interface to be passed to the

layout.

• The MetaTitle (or Name as a fallback) of the page is used for the <title>

• Links to stylesheet and script files are added to the <head>

• @Html.RenderEPiServerQuickNavigator() adds the epi Quick Access menu

@using AlloyTraining.Business.ExtensionMethods
@using AlloyTraining.Models.ViewModels
@using AlloyTraining.Models.Pages
@model IPageViewModel<SitePageData>
<html lang="@Model.CurrentPage.Language">
 <head>
 <meta charset="utf-8" />
 <meta http-equiv="X-UA-Compatible" content="IE=10" />
 <meta name="viewport" content="width=device-width, initial-scale=1.0" />
 <title>@(Model.CurrentPage.MetaTitle ?? Model.CurrentPage.Name)</title>
 <meta name="keywords" content="@Model.CurrentPage.MetaKeywords" />
 <meta name="description" content="@Model.CurrentPage.MetaDescription" />
 <link rel="stylesheet" href="@Url.Content("~/Static/css/bootstrap.css")" />
 <link rel="stylesheet"
 href="@Url.Content("~/Static/css/bootstrap-responsive.css")" />
 <link rel="stylesheet" href="@Url.Content("~/Static/css/media.css")" />
 <link rel="stylesheet" href="@Url.Content("~/Static/css/style.css")" />
 <link rel="stylesheet" href="@Url.Content("~/Static/css/editmode.css")" />
 <script type="text/javascript"
 src="@Url.Content("~/Static/js/jquery.js")"></script>
 <script type="text/javascript"
 src="@Url.Content("~/Static/js/bootstrap.js")"></script>
 </head>
 <body>
 @Html.RenderEPiServerQuickNavigator()
 <div class="container">
 <div class="row">
 <div id="header">
 <div class="span2">

 </div>
 <div class="span10">
 @if (User.Identity.IsAuthenticated)
 {

Copyright © Episerver AB. All rights reserved.

Exercise B3 – Implementing design patterns and conventions

Page 87

 Log out
 }
 else
 {
 <a
href="@FormsAuthentication.LoginUrl?ReturnUrl=@Model.CurrentPage.PageLink.ExternalURLF
romReference()">Log in
 }
 </div>
 </div>
 </div>
 <hr />
 @RenderBody()
 </div>
 </body>
</html>

Setting the layout as the default

1. In AlloyTraining, right-click ~\Views, and choose Add | New Item…, or press Ctrl + Shift + A.

2. In Add New Item - AlloyTraining, navigate to Installed | Visual C# | Web, choose MVC 5 View Page

(Razor), enter _ViewStart.cshtml for the Name, and click Add.

3. Delete all the HTML markup in _ViewStart.cshtml.

4. Set the layout to the path for _Root.cshtml, as shown in the following code:

@{
 Layout = "~/Views/Shared/Layouts/_Root.cshtml";
}

Using the view model in the Start page view

1. Open ~\Views\StartPage\Index.cshtml.

2. Import namespaces for view models, modify the @model directive to use the default view model,

and use the CurrentPage throughout the view markup, as shown in the following code:

@using AlloyTraining.Models.ViewModels
@using EPiServer.Web.Mvc.Html
@model PageViewModel<AlloyTraining.Models.Pages.StartPage>
<h1 @Html.EditAttributes(m => m.CurrentPage.Heading)>
 @(Model.CurrentPage.Heading ?? Model.CurrentPage.Name)
</h1>
<div>
 @Html.PropertyFor(m => m.CurrentPage.MainBody)
</div>

Registering a dependency resolver

To enable controllers to have constuctors with parameters to inject dependencies you must register a

dependency resolver with ASP.NET MVC. You will create an initialization module to make sure that

Episerver’s integration with StructureMap is registered as the resolver when the website starts up.

1. In AlloyTraining, right-click the Business folder and add a new folder named DependencyResolvers.

Copyright © Episerver AB. All rights reserved.

Exercise B3 – Implementing design patterns and conventions

Page 88

2. Drag and drop or copy the StructureMapDependencyResolver.cs file from \cmsdevfun-

exercisefiles\Module B\B3\Business\DependencyResolvers folder to the same folder in

AlloyTraining.

3. In AlloyTraining, expand the Business folder, right-click the Initialization folder, and choose Add |

New Item…, or press Ctrl + Shift + A.

4. In Add New Item - AlloyTraining, navigate to Installed | Visual C# | Episerver, choose Initialization

Module, enter RegisterDependencyResolverInitializationModule.cs for the name, and click Add.

5. Import the AlloyTraining.Business.DependencyResolvers, System.Web.Mvc, and

EPiServer.ServiceLocation namespaces.

6. Modify the class to make it implement the IConfigurableModule interface.

7. Use Visual Studio IntelliSense to implement the missing ConfigureContainer method, as shown

in the following screenshot:

8. Implement the ConfigureContainer and Initialize methods, as shown in the following code:

using AlloyTraining.Business.DependencyResolvers; // StructureMapDependencyResolver
using EPiServer.Framework; // [InitializableModule], [ModuleDependency]
using EPiServer.Framework.Initialization; // InitializationEngine
using EPiServer.ServiceLocation; // IConfigurableModule, ServiceConfigurationContext
using System.Web.Mvc; // DependencyResolver

namespace AlloyTraining.Business.Initialization
{
 [InitializableModule]
 [ModuleDependency(typeof(EPiServer.Web.InitializationModule))]
 public class RegisterDependencyResolverInitializationModule : IConfigurableModule
 {
 public void ConfigureContainer(ServiceConfigurationContext context)
 {
 DependencyResolver.SetResolver(
 new StructureMapDependencyResolver(context.StructureMap()));

 //Implementations for custom interfaces can be registered here.

 context.ConfigurationComplete += (o, e) =>
 {
 //Register custom implementations that should be used in favour of the
default implementations
 };
 }

 public void Initialize(InitializationEngine context) { }
 public void Uninitialize(InitializationEngine context) { }
 }
}

Copyright © Episerver AB. All rights reserved.

Exercise B3 – Implementing design patterns and conventions

Page 89

 ConfigureContainer
IContentLoader

Creating a base page controller

To enable every page to have a shared layout with a Log out link, and to have access to the content loader

service, you will create a base page controller with a Logout action method.

1. In AlloyTraining, expand Controllers, and right-click and choose Add | New Item…, or press Ctrl +

Shift + A.

2. In Add New Item - AlloyTraining, navigate to Installed | Visual C# | Episerver, choose Page

Controller (MVC), enter PageControllerBase.cs for the name, and click Add.

3. Modify the class to make it abstract, restrict the generic type to be derived from SitePageData,

and to have a Logout action method, as shown in the following code:

using AlloyTraining.Business.ExtensionMethods;
using AlloyTraining.Models.Pages;
using AlloyTraining.Models.ViewModels;
using EPiServer;
using EPiServer.Core;
using EPiServer.Filters;
using EPiServer.Web.Mvc;
using System.Linq;
using System.Web.Mvc;
using System.Web.Security;

namespace AlloyTraining.Controllers
{
 public abstract class PageControllerBase<T>
 : PageController<T> where T : SitePageData
 {
 protected readonly IContentLoader loader;

 public PageControllerBase(IContentLoader loader)
 {
 this.loader = loader;
 }

 public ActionResult Logout()
 {
 FormsAuthentication.SignOut();
 return RedirectToAction("Index");
 }

 protected IPageViewModel<TPage> CreatePageViewModel<TPage>(
 TPage currentPage) where TPage : SitePageData
 {
 var viewmodel = PageViewModel.Create(currentPage);

 viewmodel.StartPage = loader.Get<StartPage>(ContentReference.StartPage);

 viewmodel.MenuPages = FilterForVisitor.Filter(
 loader.GetChildren<SitePageData>(ContentReference.StartPage))
 .Cast<SitePageData>().Where(page => page.VisibleInMenu);

 viewmodel.Section = currentPage.ContentLink.GetSection();

 return viewmodel;
 }
 }
}

Copyright © Episerver AB. All rights reserved.

Exercise B3 – Implementing design patterns and conventions

Page 90

Modifying Start page controller to use the base class

1. Open StartPageController.cs.

2. Modify the class to derive from PageControllerBase, as shown in the following code:

public class StartPageController : PageControllerBase<StartPage>

3. In the Index action method, call the CreatePageViewModel method and pass the current page as

a parameter, and then pass the view model into the view, as shown in the following code:

using AlloyTraining.Models.Pages;
using EPiServer;
using System.Web.Mvc;

namespace AlloyTraining.Controllers
{
 public class StartPageController : PageControllerBase<StartPage>
 {
 public StartPageController(IContentLoader loader) : base(loader)
 {
 }

 public ActionResult Index(StartPage currentPage)
 {
 return View(CreatePageViewModel(currentPage));
 }
 }
}

 CreatePageViewModel

Testing the website

1. Start the AlloyTraining website and note the layout is used for visitors, as shown in the following

screenshot:

Copyright © Episerver AB. All rights reserved.

Exercise B3 – Implementing design patterns and conventions

Page 91

2. Log in and note the layout is used for on-page editing, as shown in the following screenshot:

Defining site settings on Start page for administrators only

It is good practice to store settings that affect the site on the Start page for the site.

1. In the AlloyTraining project, open StartPage.cs.

2. Add a localizable property named FooterText, and put it under the Site Settings tab, as shown in

the following code:

[CultureSpecific]
[Display(Name = "Footer text",
 Description = "The footer text will be shown at the bottom of every page.",
 GroupName = SiteTabNames.SiteSettings, Order = 10)]
public virtual string FooterText { get; set; }

3. Start the AlloyTraining site, and log in as a CMS admin.

4. Navigate to CMS | Admin | Config | Edit Tabs, and note that the two tabs defined in SiteTabNames

static class, SEO and Site Settings, have been registered from code, as shown in the following

screenshot:

5. Navigate to CMS | Admin | Admin | Administer Groups, and add a new group named WebEditors.

Copyright © Episerver AB. All rights reserved.

Exercise B3 – Implementing design patterns and conventions

Page 92

6. Navigate to CMS | Admin | Admin | Create User, and add a new user named Edward and make

him a member of WebEditors.

7. Navigate to CMS | Admin | Admin | Set Access Rights, select Root, add the virtual role named

CmsEditors, set all access rights except Administer, click Save, as shown in the following

screenshot:

8. Edit the Start page, switch to All Properties view, click Site Settings, enter a value for the footer

text, and note that it has tabs for SEO and Site Settings, as shown in the following screenshot:

9. Log out as a CMS admin, and log back in as Edward.

Copyright © Episerver AB. All rights reserved.

Exercise B3 – Implementing design patterns and conventions

Page 93

10. Edit the Start page, switch to All Properties view, and note that Edward or other members of

CmsEditors do not have the ability to see Site Settings, as shown in the following screenshot:

11. Click the SEO tab with three properties that have been localized, as shown in the following

screenshot:

12. Click the Content tab and note the new properties for Page image and Teaser text.

13. Pull down the Global menu, and click the globe icon to switch to visitor view, as shown in the

following screenshot:

14. You are still logged in and can see the epi menu.

15. Click Log out. You are now back to an anonymous visitor.

Copyright © Episerver AB. All rights reserved.

Exercise B4 – Creating page types with a shared layout and navigation

Page 94

Exercise B4 – Creating page types with a shared layout and

navigation

Prerequisites: complete Exercises B1 to B3.

In this exercise, you will create a page type named Standard that will be used for generic pages in the site.

• It will inherit from SitePageData class, making sure it gets all the SEO properties and any other

properties from this class.

• It will have a MainBody property for body text.

• It will use a _LeftNavigation.cshtml layout to have a navigation submenu.

• It will have a template, displaying some of the properties on the page type.

• You will create an instance of the Standard page named “About us”.

You will create a page type named Product that will be used for product pages in the site.

• It will inherit from StandardPage.

• It will have a template with two thirds for main content, and one third for related content.

• You will create three instances of Product page, “Alloy Meet”, “Alloy Track”, and “Alloy Plan”.

~\Views\Shared\Layouts_Root.cshtml

<head>

</head>

<body>

</body>

 ~\Views\StandardPage\Index.cshtml

~\Views\Shared\Layouts_LeftNavigation.cshtml

~\Views\Shared\Layouts_Root.cshtml

<head>

</head>

<body>

</body>

 ~\Views\ProductPage\Index.cshtml

~\Views\Shared\Layouts_RightRelatedContent.cshtml

Copyright © Episerver AB. All rights reserved.

Exercise B4 – Creating page types with a shared layout and navigation

Page 95

You will add a menu to the site to navigate between children of the Start page.

Creating the Standard page type

1. In AlloyTraining, expand Models, right-click Pages, and click Add | New Item…, or press Ctrl + Shift

+ A.

2. In Add New Item - AlloyTraining, navigate to Installed | Visual C# | Episerver, choose Page Type,

enter StandardPage.cs for the Name, and click Add.

3. Modify the class to inherit from SitePageData.

4. Change the DisplayName to Standard.

5. Set group to SiteGroupNames.Common.

6. Add a Description of “Use this page type unless you need a more specialized one.”

7. Apply the [SitePageIcon] attribute to the class.

8. Uncomment the MainBody property with all its attributes and change its Order to 310.

Your code should look something like the following:

using EPiServer.Core;
using EPiServer.DataAbstraction;
using EPiServer.DataAnnotations;
using System.ComponentModel.DataAnnotations;

namespace AlloyTraining.Models.Pages
{
 [ContentType(DisplayName = "Standard",
 GroupName = SiteGroupNames.Common,
 Description = "Use this page type unless you need a more specialized one.")]
 [SitePageIcon]
 public class StandardPage : SitePageData
 {
 [CultureSpecific]
 [Display(Name = "Main body",
 Description = "The main body will be shown in the main content area of the
page, using the XHTML-editor you can insert for example text, images and tables.",
 GroupName = SystemTabNames.Content,
 Order = 310)]
 public virtual XhtmlString MainBody { get; set; }
 }
}

Creating a left navigation layout

1. In AlloyTraining, right-click ~\Views\Shared\Layouts, and choose Add | New Item…, or press Ctrl +

Shift + A.

2. In Add New Item - AlloyTraining, navigate to Installed | Visual C# | Episerver, choose Page Partial

View (MVC Razor), enter _LeftNavigation.cshtml for the Name, and click Add.

3. Modify the view as shown in the following markup, and note the following:

• @model allows any view model that has a CurrentPage property whose type derives from

SitePageData to be passed to the layout.

• This layout is nested inside the _Root.cshtml layout.

Copyright © Episerver AB. All rights reserved.

Exercise B4 – Creating page types with a shared layout and navigation

Page 96

• Bootstrap is used to divide the layout into one third for the (future) left navigation submenu

and two thirds for the body of the web page.

@using AlloyTraining.Models.ViewModels
@using AlloyTraining.Models.Pages
@model IPageViewModel<SitePageData>
@{
 // nest the left navigation inside the root layout
 Layout = "~/Views/Shared/Layouts/_Root.cshtml";
}
<div class="row">
 <div class="span4">

 @RenderSection("_LeftNavigationMenu", required: false)
 </div>
 <div class="span8">
 @RenderBody()
 </div>
</div>

Creating a controller for the Standard page type

1. In Solution Explorer, in AlloyTraining, expand Controllers, and right-click and choose Add | New

Item…, or press Ctrl + Shift + A.

2. In Add New Item - AlloyTraining, navigate to Installed | Visual C# | Episerver, choose Page

Controller (MVC), enter StandardPageController.cs for the Name, and click Add.

3. Fix the compilation error by clicking the light bulb, and choose the option to import the

AlloyTraining.Models.Pages namespace.

4. Modify the class to derive from PageControllerBase<StandardPage>, and the Index action

method to use a view model, as shown in the following code:

using AlloyTraining.Models.Pages;
using System.Web.Mvc;

namespace AlloyTraining.Controllers
{
 public class StandardPageController : PageControllerBase<StandardPage>
 {
 public StandardPageController(IContentLoader loader) : base(loader)
 {
 }

 public ActionResult Index(StandardPage currentPage)
 {
 return View(CreatePageViewModel(currentPage));
 }
 }
}

 CreatePageViewModel View

5. On the Build menu, click Build Solution.

Creating a view for the Standard page

1. In AlloyTraining, right-click Views, and add a new folder named StandardPage.

2. Right-click StandardPage, and choose Add | New Item…, or press Ctrl + Shift + A.

Copyright © Episerver AB. All rights reserved.

Exercise B4 – Creating page types with a shared layout and navigation

Page 97

3. In Add New Item - AlloyTraining, navigate to Installed | Visual C# | Episerver, choose Page Partial

View (MVC Razor), enter Index.cshtml for the name, and click Add.

4. Modify the view, as shown in the following markup:

@using AlloyTraining.Models.ViewModels
@using AlloyTraining.Models.Pages
@model PageViewModel<StandardPage>
@{
 Layout = "~/Views/Shared/Layouts/_LeftNavigation.cshtml";
}
<h1 @Html.EditAttributes(m => m.CurrentPage.MetaTitle)>
 @(Model.CurrentPage.MetaTitle ?? Model.CurrentPage.Name)
</h1>
<div class="row">
 <div class="span8 clearfix">
 @Html.PropertyFor(x => x.CurrentPage.MainBody)
 </div>
</div>

 MetaTitle
Heading

Creating an instance of the Standard page

1. Start the AlloyTraining website and log in.

2. Add a new Standard page named About us as a child of the Start page.

3. In on-page editing, set the Main body to some text, for example: “Alloy improves the effectiveness

of project teams by putting the proper tools in your hands. Communication is made easy and

inexpensive, no matter where team members are located.” Note the two-thirds layout, as shown in

the following screenshot:

4. Switch to All Properties view and set some approproate SEO properties, for example, for the Page

title: “About us title”, and Page description: “Alloy improves the effectiveness of project teams by

putting the proper tools in your hands. Communication is made easy and inexpensive, no matter

where team members are located.”

5. Publish the page.

6. Switch to Live view and note the page’s title.

Creating a selection factory for themes

1. In AlloyTraining, right-click Business, click Add | New Folder…, and name it SelectionFactories.

2. Right-click SelectionFactories, click Add | New Item…, or press Ctrl + Shift + A.

Copyright © Episerver AB. All rights reserved.

Exercise B4 – Creating page types with a shared layout and navigation

Page 98

3. In Add New Item - AlloyTraining, navigate to Installed | Visual C# | Code, choose Class, enter

ThemeSelectionFactory.cs for the name, and click Add.

4. Import the EPiServer.Shell.ObjectEditing namespace.

5. Modify the class to implement ISelectionFactory.

6. Modify the GetSelections method to return a list of three select items for stylesheet class themes

numbered 1 to 3, as shown in the following code:

using EPiServer.Shell.ObjectEditing;
using System.Collections.Generic;

namespace AlloyTraining.Business.SelectionFactories
{
 public class ThemeSelectionFactory : ISelectionFactory
 {
 public IEnumerable<ISelectItem> GetSelections(ExtendedMetadata metadata)
 {
 return new List<SelectItem>
 {
 new SelectItem { Value = "theme1", Text = "Theme 1" },
 new SelectItem { Value = "theme2", Text = "Theme 2" },
 new SelectItem { Value = "theme3", Text = "Theme 3" }
 };
 }
 }
}

Creating the Product page type

1. In AlloyTraining, expand Models, right-click Pages, and click Add | New Item…, or press Ctrl + Shift

+ A.

2. In Add New Item - AlloyTraining, navigate to Installed | Visual C# | Episerver, choose Page Type,

enter ProductPage.cs for the Name, and click Add.

3. Modify the class to inherit from StandardPage.

4. Change the DisplayName to Product.

5. Group the page under Specialized.

6. Add a Description of “Use this for software products that Alloy sells.”

7. Apply the [SiteCommerceIcon] attribute to the class.

8. Delete the MainBody property.

9. Add the following property and decorate it with the theme selection factory so the Editor can

choose one theme:

• Name: Theme

• Type: string

10. Set the default theme to “theme1”.

11. Add the following property and allow it to be localized into multiple languages:

• Name: UniqueSellingPoints

• Type: IList<string>

• GroupName: SystemTabNames.Content

• Order: 320

• Required: force the editor to provide a value when adding a new product page

Your code should look something like the following:

Copyright © Episerver AB. All rights reserved.

Exercise B4 – Creating page types with a shared layout and navigation

Page 99

using AlloyTraining.Business.SelectionFactories;
using EPiServer.DataAbstraction;
using EPiServer.DataAnnotations;
using EPiServer.Shell.ObjectEditing;
using System.Collections.Generic;
using System.ComponentModel.DataAnnotations;

namespace AlloyTraining.Models.Pages
{
 [ContentType(DisplayName = "Product",
 GroupName = SiteGroupNames.Specialized, Order = 20,
 Description = "Use this for software products that Alloy sells.")]
 [SiteCommerceIcon]
 public class ProductPage : StandardPage
 {
 public override void SetDefaultValues(ContentType contentType)
 {
 base.SetDefaultValues(contentType);

 Theme = "theme1";
 }

 [SelectOne(SelectionFactoryType = typeof(ThemeSelectionFactory))]
 [Display(GroupName = SystemTabNames.Content, Order = 310)]
 public virtual string Theme { get; set; }

 [CultureSpecific]
 [Display(Name = "Unique selling points",
 GroupName = SystemTabNames.Content, Order = 320)]
 [Required]
 public virtual IList<string> UniqueSellingPoints { get; set; }
 }
}

Creating a right related content layout

1. Right-click ~\Views\Shared, and add a new folder named Layouts.

2. Right-click ~\Views\Shared\Layouts, and choose Add | New Item…, or press Ctrl + Shift + A.

3. In Add New Item - AlloyTraining, navigate to Installed | Visual C# | Episerver, choose Page Partial

View (MVC Razor), enter _RightRelatedContent.cshtml for the Name, and click Add.

4. Modify the view as shown in the following mark, noting the following:

• @model allows any view model that has a CurrentPage property that derives from

SitePageData to be passed to the layout.

• This layout is nested inside the _Root.cshtml layout.

• Bootstrap is used to divide the layout into two thirds for the body of the web page and one

third for the (optional) related content.

@using AlloyTraining.Models.ViewModels
@using AlloyTraining.Models.Pages
@model IPageViewModel<SitePageData>
@{
 // nest the right related content inside the root layout
 Layout = "~/Views/Shared/Layouts/_Root.cshtml";
}
<div class="row">
 <div class="span8">
 @RenderBody()

Copyright © Episerver AB. All rights reserved.

Exercise B4 – Creating page types with a shared layout and navigation

Page 100

 </div>
 <div class="span4">
 @RenderSection("RelatedContent", required: false)
 </div>
</div>

Creating a controller for the Product page type

1. In AlloyTraining, expand Controllers, and right-click and choose Add | New Item…, or press Ctrl +

Shift + A.

2. In Add New Item - AlloyTraining, navigate to Installed | Visual C# | Episerver, choose Page

Controller (MVC), enter ProductPageController.cs for the Name, and click Add.

3. Fix the compilation error by clicking the light bulb, and choose the option to import the

AlloyTraining.Models.Pages namespace.

4. Modify the class to derive from PageControllerBase<T>, and the Index action method to use a view

model, as shown in the following code:

using AlloyTraining.Models.Pages;
using System.Web.Mvc;

namespace AlloyTraining.Controllers
{
 public class ProductPageController
 : PageControllerBase<ProductPage>
 {
 public ProductPageController(IContentLoader loader) : base(loader)
 {
 }

 public ActionResult Index(ProductPage currentPage)
 {
 return View(CreatePageViewModel(currentPage));
 }
 }
}

5. On the Build menu, click Build Solution.

Creating a view for the Product page

1. In AlloyTraining, right-click Views, and add a new folder named ProductPage.

2. Right-click ProductPage, and choose Add | New Item…, or press Ctrl + Shift + A.

3. In Add New Item - AlloyTraining, navigate to Installed | Visual C# | Episerver, choose Page Partial

View (MVC Razor), enter Index.cshtml for the Name, and click Add.

4. Modify the view as shown in the following mark, noting the following:

• This view is nested inside the _RightRelatedContent.cshtml layout.

• The body of the view will be injected into the layout where RenderBody() was called, inside the

first two-thirds <div>.

• The section RelatedContent will be injected into the layout inside the last third <div>.

@using AlloyTraining.Models.ViewModels
@using AlloyTraining.Models.Pages
@model PageViewModel<ProductPage>
@{
 Layout = "~/Views/Shared/Layouts/_RightRelatedContent.cshtml";
}

Copyright © Episerver AB. All rights reserved.

Exercise B4 – Creating page types with a shared layout and navigation

Page 101

<h1 @Html.EditAttributes(x => x.CurrentPage.Name)>@Model.CurrentPage.Name</h1>
<p class="introduction"
 @Html.EditAttributes(x => x.CurrentPage.MetaDescription)>
 @Model.CurrentPage.MetaDescription</p>
<div class="row">
 <div class="span8 clearfix">
 @Html.PropertyFor(x => x.CurrentPage.MainBody)
 </div>
</div>
@section RelatedContent
{
 <div @Html.EditAttributes(x => x.CurrentPage.PageImage)>

 </div>
 <div class="block colorBox @Model.CurrentPage.Theme">
 <h2 @Html.EditAttributes(x => x.CurrentPage.Name)>
 @Model.CurrentPage.Name
 </h2>
 <p @Html.EditAttributes(x => x.CurrentPage.UniqueSellingPoints)>
 @foreach(string usp in Model.CurrentPage.UniqueSellingPoints)
 {
 @usp
 }
 </p>
 </div>
}

Creating instances of Product page type

1. Build and start the AlloyTraining website.

2. Add three Product pages under the Start page, using the following table:

 Alloy Meet Alloy Plan Alloy Track

Unique
selling
points

• Project tracking
• White board sketch
• Built-in reminders
• Share meeting results
• Email interface to

request meetings

• Project planning
• Reporting and statistics
• Email handling of tasks
• Risk calculations
• Direct communication to

members

• Shared timeline
• Project emails
• To-do lists
• Workflows
• Status reports

Page
description

You've never had a
meeting like this before!

Project management has
never been easier!

Projects have a natural
lifecycle with well-
defined stages.

Main body

Participants from remote
locations appear in your
meeting room, around
your table, or stand
presenting at your white
board.

Planning is crucial to the
success of any project. Alloy
Plan takes into consideration
all aspects of project
planning; from well-defined
objectives to staffing, capital
investments and
management support.
Nothing is left to chance.

From start-up meetings
to final sign-off, we
have the solutions for
today’s market-driven
needs. Leverage your
assets to the fullest
through the
combination of Alloy
Plan, Alloy Meet and
Alloy Track.

Theme theme1 theme2 theme3

Copyright © Episerver AB. All rights reserved.

Exercise B4 – Creating page types with a shared layout and navigation

Page 102

3. Set PageImage for each product page to the appropriate media asset, and publish the pages, as

shown in the following screenshot:

4. In Navigation pane, on Pages tab, drag and drop the product pages to manully order them

alphabetically, as shown in the following screenshot:

Limiting available page types

1. In AlloyTraining, open StartPage.cs.

2. Modify the start page type to limit its children to standard pages, as shown highlighted in the

following code:

[ContentType(...)]
[SiteStartIcon]
[AvailableContentTypes(Include = new[] { typeof(StandardPage) })]
public class StartPage : SitePageData

3. In AlloyTraining, open StandardPage.cs.

4. Modify the standard page type to limit its children to standard pages or their derived page types,

except product pages, as shown highlighted in the following code:

[ContentType(...)]
[SitePageIcon]
[AvailableContentTypes(Include = new[] { typeof(StandardPage) },
 Exclude = new[] { typeof(ProductPage) })]
public class StandardPage : SitePageData

Copyright © Episerver AB. All rights reserved.

Exercise B4 – Creating page types with a shared layout and navigation

Page 103

Creating a partial view for the navigation menu

1. In AlloyTraining, right-click ~\Views\Shared, and choose Add | New Item…, or press Ctrl + Shift + A.

2. In Add New Item - AlloyTraining, navigate to Installed | Visual C# | Episerver, choose Page Partial

View (MVC Razor), enter _NavigationMenu.cshtml for the name, and click Add.

3. Modify the view, as shown in the following markup:

@using AlloyTraining.Business.ExtensionMethods
@using AlloyTraining.Models.Pages
@using AlloyTraining.Models.ViewModels
@using EPiServer.Core
@model IPageViewModel<SitePageData>

 @Html.ContentLink(ContentReference.StartPage)

 @foreach (SitePageData page in Model.MenuPages)
 {
 @Html.ContentLink(page.ContentLink)
 }

 @if (User.Identity.IsAuthenticated)
 {
 Log out @User.Identity.Name
 }
 else
 {
 <a href="@FormsAuthentication.LoginUrl?ReturnUrl=
 @Model.CurrentPage.PageLink.ExternalURLFromReference()">Log in
 }

Updating the root layout to use the navigation menu

1. Open ~\Views\Shared\Layouts_Root.cshtml.

2. Inside the <div class="span10">, delete the @if statement that outputs the log in/out

hyperlinks, and replace it with a call to output the navigation menu partial view, as shown in the

following markup:

<div class="span10">
 @Html.Partial("_NavigationMenu")
</div>

Copyright © Episerver AB. All rights reserved.

Exercise B4 – Creating page types with a shared layout and navigation

Page 104

3. Start the AlloyTraining website, and use the menu to navigate between pages, as shown in the

following screenshot:

Helping CMS Editors by revealing help text

We have been setting a Description for most page type properties, but you probably haven’t seen where

they appear because the default behaviour is quite hidden. A CMS Editor must know to hover their mouse

over the label for a property and wait a few seconds for a tooltip to appear. We will make it more obvious.

1. In the AlloyTraining project, add a new folder named ClientResources.

2. In the ClientResources folder, add a new folder named EditView.

3. In the EditView folder, create a CSS stylesheet named helpText.css.

4. Modify its contents, as shown in the following code:

.Sleek .dijitTabPaneWrapper .epi-form-container__section__row label[title]:after {
 background-color: #C9C9C9;
 border-radius: 10px 10px 10px 10px;
 border: 1px solid #ACACAC;
 color: #FFFFFF;
 content: "i";
 display: inline-block;
 font-size: 1em;
 font-weight: bold;
 height: 14px;
 line-height: 14px;
 margin: 0 0 0 5px;
 float: right;
 text-align: center;
 width: 14px;
}
.Sleek .dijitTabPaneWrapper .epi-formsRow label[title=""]:after,
.Sleek .dijitTabPaneWrapper .epi-form-container__section__row label[title=""]:after {
 display: none;
}
.Sleek .dijitTabPaneWrapper .epi-formsRow label[title]:hover:after,
.Sleek .dijitTabPaneWrapper .epi-form-container__section__row label[title]:hover:after
{
 background-color: #1ba4fa;
 border: 1px solid #1285de;
}

5. In AlloyTraining, add a new file named module.config.

6. Modify its contents, as shown in the following markup:

<?xml version="1.0" encoding="utf-8"?>
<module>
 <clientResources>

Copyright © Episerver AB. All rights reserved.

Exercise B4 – Creating page types with a shared layout and navigation

Page 105

 <add name="epi-cms.widgets.base" path="EditView/helpText.css"
resourceType="Style"/>
 </clientResources>
</module>

7. Start the AlloyTraining website and log in as a CMS administrator.

8. Edit the Start page and switch to All Properties view.

9. Hover your mouse over any of the “information” icons and note they change to blue and show a

tooltip, as shown in the following screenshot:

https://beendaved.blogspot.co.uk/2016/09/simple-approach-to-tooltip-icons-for.html

Copyright © Episerver AB. All rights reserved.

Exercise C1 – Creating partial templates for product pages and image files for use in content areas

Page 106

Module C – Rendering Content Templates

Goal

The overall goal of the exercises in this module is to see how you can customize the experience for visitors.

You will:

1. Implement a content area property on the Start page and create a partial page template for Product

pages to enable them to be rendered in the content area.

2. Create a partial template for all pages to enable them to be rendered in a content area.

3. Define display options to allow content editors to apply tags to select between multiple templates.

4. Apply tags programmatically to allow developers to apply tags to select between multiple templates

5. Create a display channel to set a tag automatically based on information in an incoming request to

select between multiple templates.

Exercise C1 – Creating partial templates for product pages and

image files for use in content areas

In this exercise, you will create a content area on the start page and add pages (and later blocks) to it.

Prerequisites: complete Exercises B1 to B4.

Adding a content area to the Start page type and template

The content area on the Start page will allow only blocks or standard pages to be included.

1. In AlloyTraining, open ~\Models\Pages\StartPage.cs.

2. Add a ContentArea property named MainContentArea with appropriate attributes, as shown in the

following code:

[CultureSpecific]
[Display(Name = "Main content area",
 Description = "Drag and drop images, blocks, folders, and pages with
partial templates.",
 GroupName = SystemTabNames.Content,
 Order = 30)]
[AllowedTypes(typeof(StandardPage),
 typeof(BlockData), typeof(ImageData), typeof(ContentFolder))]
public virtual ContentArea MainContentArea { get; set; }

3. In AlloyTraining, open ~\Views\StartPage\Index.cshtml.

4. At the bottom of the view, output the MainContentArea property so that editors get an on-page

editing experience, as shown in the following markup:

@Html.PropertyFor(m => m.CurrentPage.MainContentArea,
 new { CssClass = "row equal-height" })

Testing the content area

1. Start the AlloyTraining website, and log in as a CMS admin.

Copyright © Episerver AB. All rights reserved.

Exercise C1 – Creating partial templates for product pages and image files for use in content areas

Page 107

2. In Edit view, open Navigation | Pages, drag and drop the three product pages into the Main

content area, and note the warning message “The ‘ProductPage’ cannot be displayed”.

3. Open Assets | Media, drag and drop the three product images from the Products folder into the

Main content area, and note the warning message, “The ‘ImageFile’ cannot be displayed.”, as

shown in the following screenshot:

4. In All Properties view, Main content area looks like the following screenshot:

5. Publish the changes to the Start page.

6. Pull down the Global menu and switch to visitor view. Note that instead of showing the warning

message, visitors see nothing.

Creating a partial content controller for product pages

1. In AlloyTraining, expand Controllers, and copy and paste the ProductPageController.cs file.

Copyright © Episerver AB. All rights reserved.

Exercise C1 – Creating partial templates for product pages and image files for use in content areas

Page 108

2. Rename the copy to ProductPagePartialController.cs.

3. Open ProductPagePartialController.cs.

4. Import the EPiServer.Web.Mvc namespace.

5. Rename the class to ProductPagePartialController.

6. Change the class to inherit from PartialContentController<ProductPage>.

7. Add the override keyword to the Index action method.

8. Modify the return statement to use PartialView and call PageViewModel‘s Create method

passing the current page.

The class should now look something like this:

using AlloyTraining.Models.Pages;
using AlloyTraining.Models.ViewModels;
using EPiServer.Web.Mvc;
using System.Web.Mvc;

namespace AlloyTraining.Controllers
{
 public class ProductPagePartialController
 : PartialContentController<ProductPage>
 {
 public override ActionResult Index(ProductPage currentPage)
 {
 return PartialView(PageViewModel.Create(currentPage));
 }
 }
}

Creating a partial view for product pages

1. In AlloyTraining, right-click Views, and add a new folder named ProductPagePartial.

2. Expand ~\Views\ProductPage, and copy the Index.cshtml file into the folder ProductPagePartial.

3. Open ~\Views\ProductPagePartial\Index.cshtml.

4. Modify the contents, as shown in the following markup, and note the following:

• The markup is like the “full” view, but it outputs only four properties: Name, MetaDescription,

UniqueSellingPoints, and PageImage. This is a subset of the content.

• The property output is wrapped in a <div> with a border, wrapped in a <div> with a Bootstrap

span4 class. This will allocate one third of a Bootstrap row width to each product.

• The whole product is wrapped in a clickable hyperlink that would navigate the visitor to the

“full” product page.

@using AlloyTraining.Models.ViewModels
@using AlloyTraining.Models.Pages
@model PageViewModel<ProductPage>
<div class="block span4">
 <div class="border">

 <h2 @Html.EditAttributes(x => x.CurrentPage.Name)>
 @Model.CurrentPage.Name</h2>

Copyright © Episerver AB. All rights reserved.

Exercise C1 – Creating partial templates for product pages and image files for use in content areas

Page 109

 <p class="introduction"
 @Html.EditAttributes(x => x.CurrentPage.MetaDescription)>
 @Model.CurrentPage.MetaDescription</p>
 <div>
 @foreach(string usp in
 Model.CurrentPage.UniqueSellingPoints)
 {
 <small class="label label-info" style="color:white;">@usp</small>
 }
 </div>
 <div @Html.EditAttributes(x => x.CurrentPage.PageImage)>

 </div>

 </div>
</div>

Creating a template view for image files

1. In AlloyTraining, right-click ~\Views\Shared, and choose Add | New Item…, or press Ctrl + Shift + A.

2. In Add New Item - AlloyTraining, navigate to Installed | Visual C# | Episerver, choose Page Partial

View (MVC Razor), enter ImageFile.cshtml for the Name, and click Add.

3. Modify the contents, as shown in the following markup:

@using EPiServer.Web.Mvc.Html
@model AlloyTraining.Models.Media.ImageFile

<div class="block span4">
 <figure class="border">
 <img src="@Url.ContentUrl(Model.ContentLink)"
 alt="@Model.Description" />
 <figcaption>@Model.Description</figcaption>
 </figure>
</div>

Testing the partial page and image templates

1. Start the AlloyTraining website, and note the visitor’s view of the content area with three product

pages and three product images rendered by their partial content templates:

2. Click each partial product page to confirm that it links to the correct full product page.

Copyright © Episerver AB. All rights reserved.

Exercise C1 – Creating partial templates for product pages and image files for use in content areas

Page 110

3. Right-click one of the product images, click Inspect, and note the following, as shown in the

following screenshot:

• A <div> element with Bootstrap class of row and equal-height that contains three <div>

elements that were generated for each reference to a product page in the content area.

• Three <div> elements with Bootstrap class of block and span4 that were output by the

partial view.

• The URL used for the src attribute of the product images.

4. Log in as a CMS admin.

5. Due to using Bootstrap the output is responsive, and an editor can edit a product page using the

partial page template and its context menu directly from the Start page, as shown in the following

screenshot:

Copyright © Episerver AB. All rights reserved.

Exercise C1 – Creating partial templates for product pages and image files for use in content areas

Page 111

Creating a partial content template for folders

We might want to be able to add a reference to a folder inside a content area and see its name and how

many items are in that folder.

1. In AlloyTraining, expand Models/ViewModels, right-click and choose Add | Class…, or press Shift +

Alt + C.

2. Name the class ContentFolderViewModel.cs.

3. Modify the statements, as shown in the following code:

using EPiServer.Core;

namespace AlloyTraining.Models.ViewModels
{
 public class ContentFolderViewModel
 {
 public ContentFolder CurrentFolder { get; set; }
 public int ItemsCount { get; set; }
 }
}

4. In AlloyTraining, expand Controllers, and right-click and choose Add | New Item…, or press Ctrl +

Shift + A.

5. In Add New Item - AlloyTraining, navigate to Installed | Visual C# | Episerver, choose Block

Controller (MVC), enter ContentFolderController.cs for the name, and click Add.

6. Fix the compilation error by changing the base class from BlockController to

PartialContentController.

7. Modify the statements to define a private field to store the IContentLoader and set it in the

constructor, change the Index action method to use a parameter named currentContent, and

create an instance of the ContentFolderViewModel and set its properties, as shown in the

following code:

using AlloyTraining.Models.ViewModels;
using EPiServer;
using EPiServer.Core;
using EPiServer.Web.Mvc;
using System.Linq;
using System.Web.Mvc;

namespace AlloyTraining.Controllers
{
 public class ContentFolderController : PartialContentController<ContentFolder>
 {
 private readonly IContentLoader loader;

 public ContentFolderController(IContentLoader loader)
 {
 this.loader = loader;
 }

 public override ActionResult Index(ContentFolder currentContent)
 {
 var viewmodel = new ContentFolderViewModel
 {
 CurrentFolder = currentContent,
 ItemsCount = loader.GetChildren<IContent>
 (currentContent.ContentLink).Count()
 };

 return PartialView(viewmodel);
 }

Copyright © Episerver AB. All rights reserved.

Exercise C1 – Creating partial templates for product pages and image files for use in content areas

Page 112

 }
}

8. In AlloyTraining, right-click Views, and add a new folder named ContentFolder.

9. Right-click ContentFolder, and choose Add | New Item…, or press Ctrl + Shift + A.

10. In Add New Item - AlloyTraining, navigate to Installed | Visual C# | Episerver, choose Page Partial

View (MVC Razor), enter Index.cshtml for the name, and click Add.

11. Modify the file, as shown in the following markup:

@model AlloyTraining.Models.ViewModels.ContentFolderViewModel
<h4>@Model.CurrentFolder.Name folder contains @Model.ItemsCount items.</h4>

Testing the partial content template for folders

1. Start the AlloyTraining website, and log in as a CMS admin.

2. Edit the Start page, and drag and drop the Documents folder from the Assets pane into the main

content area, and note the name and number of items is displayed, as shown in the following

screenshot:

3. Publish the Start page.

4. Close the browser.

Copyright © Episerver AB. All rights reserved.

Exercise C2 – Creating a partial template for all pages

Page 113

Exercise C2 – Creating a partial template for all pages

In this exercise, you will create partial page templates to enable any site page to render inside a content

area.

Page templates can be defined for base classes and then inherited by any page type that derives from that

base class. You will:

• Define a partial page template for all pages to render the page Name and MetaDescription in a

“full” 3/3 width view with yellow background colour.

• Define a partial page template for all pages to render the page Name and MetaDescription in a

“wide” 2/3 width view with pink background colour.

• Define a partial page template for all pages to render the page Name and MetaDescription in a

“narrow” 1/3 width view with green background colour.

• Define SiteTags class with string constants for the three tag values: “Full”, “Wide”, and “Narrow”.

Prerequisites: complete Exercises B1 to B4, C1.

Creating a partial content controller for all pages

1. In AlloyTraining, right-click AlloyTraining, and click Add | New Item…, or press Ctrl + Shift + A.

2. In Add New Item - AlloyTraining, navigate to Installed | Visual C# | Code, choose Class, enter

SiteTags.cs for the name, and click Add.

3. Modify the file, as shown in the following code:

namespace AlloyTraining
{
 public static class SiteTags
 {
 public const string Full = "full";
 public const string Wide = "wide";
 public const string Narrow = "narrow";
 }
}

4. In AlloyTraining, expand Controllers, and copy and paste the ProductPagePartialController.cs file.

5. Rename the copy to AllPagesPartialController.cs.

6. Open AllPagesPartialController.cs.

7. Rename the class to AllPagesFullPartialController.

8. Change all references from ProductPage to SitePageData.

9. Apply TemplateDescriptor attribute to mark this class as allowing page template inheritance.

10. Modify the call to PartialView to pass in the name of a view: SiteTags.Full

The class should now look something like this:

using AlloyTraining.Models.Pages;
using AlloyTraining.Models.ViewModels;
using EPiServer.Web.Mvc;
using System.Web.Mvc;

namespace AlloyTraining.Controllers
{
 [TemplateDescriptor(Inherited = true,
 Tags = new[] { SiteTags.Full }, AvailableWithoutTag = true)]
 public class AllPagesFullPartialController

Copyright © Episerver AB. All rights reserved.

Exercise C2 – Creating a partial template for all pages

Page 114

 : PartialContentController<SitePageData>
 {
 public override ActionResult Index(SitePageData currentPage)
 {
 return PartialView(viewName: SiteTags.Full,
 model: PageViewModel.Create(currentPage));
 }
 }
}

Creating additional partial page templates for “wide” and “narrow”

1. Open AllPagesPartialController.cs.

2. Inside the namespace, copy the entire class and its attribute to the clipboard.

3. Paste twice to create two copies of the class.

a. Rename the first copy to: AllPagesWidePartialController

b. Rename the second copy to: AllPagesNarrowPartialController

4. Change the TemplateDescriptor attributes of the two copies to set a Tag named “wide” or

“narrow” and make the two copies only available if the tag is set.

5. Explicitly pass the name of a partial view to use instead of Full: Wide or Narrow.

Your two copied classes should look something like the following code:

[TemplateDescriptor(Inherited = true,
 Tags = new[] { SiteTags.Wide }, AvailableWithoutTag = false)]
public class AllPagesWidePartialController
 : PartialContentController<SitePageData>
{
 public override ActionResult Index(SitePageData currentPage)
 {
 return PartialView(viewName: SiteTags.Wide,
 model: PageViewModel.Create(currentPage));
 }
}

[TemplateDescriptor(Inherited = true,
 Tags = new[] { SiteTags.Narrow }, AvailableWithoutTag = false)]
public class AllPagesNarrowPartialController
 : PartialContentController<SitePageData>
{
 public override ActionResult Index(SitePageData currentPage)
 {
 return PartialView(viewName: SiteTags.Narrow,
 model: PageViewModel.Create(currentPage));
 }
}

Creating partial views for all pages

1. Expand ~\Views\ProductPageParial and copy the Index.cshtml file into the folder ~\Views\Shared.

2. Rename it to Full.cshtml.

3. Open ~\Views\Shared\Full.cshtml.

4. Modify the contents, as shown in the following markup, and note the following:

Copyright © Episerver AB. All rights reserved.

Exercise C2 – Creating a partial template for all pages

Page 115

• PageViewModel<T> now uses a SitePageData instead of ProductPage, so that the template

will work with any type of page on the site.

• It has a Bootstrap class of span12 for “full” width.

• It has a style that sets the background color to light yellow.

• It outputs three properties in this order vertically: Name, MetaDescription, and PageImage.

@using AlloyTraining.Models.ViewModels
@using AlloyTraining.Models.Pages
@model PageViewModel<SitePageData>
<div class="block span12" style="background-color: lightyellow;">
 <div class="border">

 <h2 @Html.EditAttributes(x => x.CurrentPage.Name)>
 @Model.CurrentPage.Name</h2>
 <p class="introduction"
 @Html.EditAttributes(x => x.CurrentPage.MetaDescription)>
 @Model.CurrentPage.MetaDescription</p>
 <div @Html.EditAttributes(x => x.CurrentPage.PageImage)>

 </div>

 </div>
</div>

5. Save and close Full.cshtml.

6. Copy and paste Full.cshtml twice:

• Rename the first copy: Wide.cshtml

• Rename the second copy: Narrow.cshtml

7. Open Wide.cshtml.

8. Modify the contents, as shown in the following markup, and note the following:

• It has a Bootstrap class of span8 for “wide” 2/3 width.

• It has a style that sets the background color to light pink (lavenderblush).

• It outputs two properties in this order vertically: PageImage and Name.

@using AlloyTraining.Models.ViewModels
@using AlloyTraining.Models.Pages
@model PageViewModel<SitePageData>
<div class="block span8" style="background-color: lavenderblush;">
 <div class="border">

 <div @Html.EditAttributes(x => x.CurrentPage.PageImage)>

 </div>
 <h2 @Html.EditAttributes(x => x.CurrentPage.Name)>
 @Model.CurrentPage.Name</h2>

 </div>
</div>

9. Open Narrow.cshtml.

10. Modify the contents, as shown in the following markup, and note the following:

• It has a Bootstrap class of span4 for “narrow” 1/3 width.

• It has a style that sets the background color to pale green.

Copyright © Episerver AB. All rights reserved.

Exercise C2 – Creating a partial template for all pages

Page 116

• It outputs two properties in this order vertically: Name and MetaDescription.

@using AlloyTraining.Models.ViewModels
@using AlloyTraining.Models.Pages
@model PageViewModel<SitePageData>
<div class="block span4" style="background-color: palegreen;">
 <div class="border">

 <h2 @Html.EditAttributes(x => x.CurrentPage.Name)>
 @Model.CurrentPage.Name</h2>
 <p class="introduction"
 @Html.EditAttributes(x => x.CurrentPage.MetaDescription)>
 @Model.CurrentPage.MetaDescription</p>

 </div>
</div>

Testing the partial page template

1. Start the AlloyTraining website, and log in as a CMS admin.

2. Edit the About us page, and switch to All Properties view.

3. In Assets pane, click Media.

4. Upload the image ~\Assets\Misc\FindReseller.png to the folder For This Site.

5. Drag and drop the image FindReseller.png to the Page image property of the About us page, as

shown in the following screenshot:

6. Publish the change.

7. Edit the Start page.

8. Drag and drop the About us page into the main content area, as shown in the following screenshot,

and note that it uses the “full” partial page template:

Copyright © Episerver AB. All rights reserved.

Exercise C2 – Creating a partial template for all pages

Page 117

9. Switch to All Properties view.

10. Select the context menu for the reference to the About us page, and note there are no display

options to assign alternative tags, as shown in the following screenshot:

Copyright © Episerver AB. All rights reserved.

Exercise C3 – Enabling editors to apply tags manually using display options

Page 118

Exercise C3 – Enabling editors to apply tags manually using display

options

In this exercise, you will define three display options to alloy an editor to apply tags manually to individual

content items in a content area to switch between partial page templates.

Prerequisites: complete Exercises B1 to B4, C1 and C2.

Adding display options using an initialization module

Display options for applying tags to content references should be registered during initialization.

1. In AlloyTraining, right-click Business, and add a folder named Initialization.

2. In ~\Business\Initialization, add an Episerver | Initialization Module named

DisplayOptionsInitializationModule.cs.

3. Modify the class, as shown in the following code:

using EPiServer.Framework;
using EPiServer.Framework.Initialization;
using EPiServer.Web;

namespace AlloyTraining.Business.Initialization
{
 [InitializableModule]
 [ModuleDependency(typeof(EPiServer.Web.InitializationModule))]
 public class DisplayOptionsInitializationModule : IInitializableModule
 {
 public void Initialize(InitializationEngine context)
 {
 var options =
 context.Locate.Advanced.GetInstance<DisplayOptions>();

 options.Add(id: SiteTags.Full, name: "Full", tag: SiteTags.Full);
 options.Add(id: SiteTags.Wide, name: "Wide", tag: SiteTags.Wide);
 options.Add(
 id: SiteTags.Narrow, name: "Narrow", tag: SiteTags.Narrow);
 }

 public void Uninitialize(InitializationEngine context) { }
 }
}

4. In ~\Resources\LanguageFiles, add an XML file named DisplayOptions.xml.

5. Modify the file, as shown in the following markup:

<?xml version="1.0" encoding="utf-8" standalone="yes"?>
<languages>
 <language name="English" id="en">
 <displayoptions>
 <full>Full</full>
 <wide>Wide</wide>
 <narrow>Narrow</narrow>
 </displayoptions>
 </language>
 <language name="Swedish" id="sv">
 <displayoptions>
 <full>Full</full>
 <wide>Bred</wide>
 <narrow>Smal</narrow>
 </displayoptions>
 </language>

Copyright © Episerver AB. All rights reserved.

Exercise C3 – Enabling editors to apply tags manually using display options

Page 119

</languages>

Testing display options

1. Start the AlloyTraining website and log in as a CMS admin.

2. Edit the Start page and switch to All Properties view.

3. Click Content tab and scroll down to the Main content area property.

4. Select About us, and click the context menu to choose a Display As option, for example Narrow, as

shown in the following screenshot:

5. Publish the change and note the partial page template used to render the About us page has been

changed to use the Narrow template (that doesn’t show the image and it has a green background).

6. Try applying the Wide display option, and note it renders the image above the title, without a

description, as shown in the following screenshot:

7. Publish the page.

8. Close the browser.

ProductPage SitePageData

Copyright © Episerver AB. All rights reserved.

Exercise C4 – Applying tags to content areas with code

Page 120

Exercise C4 – Applying tags to content areas with code

In this exercise, you will create two content areas on the product page and then control which partial page

template is used by programmatically applying a tag: full, wide, or narrow.

Prerequisites: complete Exercises B1 to B4, C1 to C2.

Adding a content area to the Product page type and template

1. In AlloyTraining, open ~\Models\Pages\ProductPage.cs.

2. Add two ContentArea properties with appropriate attributes: MainContentArea and

RelatedContentArea, as shown in the following code:

[Display(Name = "Main content area",
 Description = "Drag and drop blocks and pages with partial templates.",
 GroupName = SystemTabNames.Content,
 Order = 330)]
public virtual ContentArea MainContentArea { get; set; }

[Display(Name = "Related content area",
 Description = "Drag and drop blocks and pages with partial templates.",
 GroupName = SystemTabNames.Content,
 Order = 340)]
public virtual ContentArea RelatedContentArea { get; set; }

3. In AlloyTraining, open ~\Views\ProductPage\Index.cshtml.

4. Import the AlloyTraining namespace, as shown in the following markup:

@using AlloyTraining

5. Above @section RelatedContent, render the MainContentArea property so that editors get an

on-page editing experience, set Bootstrap classes of row and equal-height, and set the wide site

tag, as shown in the following markup:

@Html.PropertyFor(m => m.CurrentPage.MainContentArea,
 new { CssClass = "row equal-height", Tag = SiteTags.Wide })

6. At the bottom of @section RelatedContent, before the close brace, render the

RelatedContentArea property so that editors get an on-page editing experience, set Bootstrap

classes of row and equal-height, and set the narrow site tag, as shown in the following markup:

@Html.PropertyFor(m => m.CurrentPage.RelatedContentArea,
 new { CssClass = "row equal-height", Tag = SiteTags.Narrow })

Testing the content areas on product pages

1. Start the AlloyTraining website, and log in as a CMS admin.

2. Edit one of the product pages, for example, Alloy Meet.

Copyright © Episerver AB. All rights reserved.

Exercise C4 – Applying tags to content areas with code

Page 121

3. Drag and drop About us from the Navigation pane’s Pages tree, into the Main content area, as

shown in the following screenshot:

4. Drag and drop About us from the Navigation pane’s Pages tree, into the Related content area, and

note that different partial page templates are used (Wide.cshtml and Narrow.cshtml) due to the

tags applied programmatically, as shown in the following screenshot:

5. Publish the page.

6. Close the browser.

Copyright © Episerver AB. All rights reserved.

Exercise C5 – Applying tags automatically using a display channel

Page 122

Exercise C5 – Applying tags automatically using a display channel

In this exercise, you will create a page template for Start page optimized for mobile devices and a display

channel that automatically sets the mobile tag based on information in an incoming HTTP request.

Prerequisites: complete Exercises B1 – B4.

Creating a mobile page template controller and view

1. In AlloyTraining, open ~\Controllers.

2. Copy and paste the StartPageController.cs file.

3. Rename the copy to StartPageMobileController.cs, and open it.

4. Import the EPiServer.Framework.Web namespace, as shown in the following code:

using EPiServer.Framework.Web;

5. Apply an attribute to ensure this controller is only used when the “mobile” rendering tag is set, as

shown in the following code:

[TemplateDescriptor(Tags = new[] { RenderingTags.Mobile },
 AvailableWithoutTag = false)]
public class StartPageMobileController : PageControllerBase<StartPage>

6. In AlloyTraining, right-click Views, and add a new folder named StartPageMobile.

7. Expand ~\Views\StartPage, and copy the Index.cshtml file into the folder StartPageMobile.

8. Open ~\Views\StartPageMobile\Index.cshtml.

9. At the bottom of the view, delete the outputting of the MainContentArea using PropertyFor, and

replace it with an enumeration of the filtered items in the content area that outputs a link to each

page, as shown in the following markup:

 @foreach(var item in Model.CurrentPage.MainContentArea.FilteredItems)
 {
 @Html.ContentLink(item.ContentLink)
 }

Creating a display channel

1. In AlloyTraining, right-click ~\Business, and add a new folder named DisplayChannels.

2. Right-click ~\Business\DisplayChannels, and add a new class named MobileDisplayChannel.

3. Import the EPiServer.Web namespace.

4. Make the class inherit from DisplayChannel.

5. Use Visual Studio to implement the abstract class, as shown in the following screenshot:

Copyright © Episerver AB. All rights reserved.

Exercise C5 – Applying tags automatically using a display channel

Page 123

6. For the ChannelName property, return the mobile rendering tag.

7. For the IsActive method, return if the current request is from a mobile device.

Your completed class should look something like the following code:

using EPiServer.Framework.Web;
using EPiServer.Web;
using System.Web;

namespace AlloyTraining.Business.DisplayChannels
{
 public class MobileDisplayChannel : DisplayChannel
 {
 // C# 6.0 syntax for a read-only property
 public override string ChannelName => RenderingTags.Mobile;

 public override bool IsActive(HttpContextBase context)
 {
 return context.Request.Browser.IsMobileDevice;
 }
 }
}

Testing the display channel

1. Start the AlloyTraining website.

2. Press F12 to show developer tools.

3. In Chrome’s developer tools pane, click Toogle device toolbar, or press Ctrl + Shift + M, and note

that by default Chrome shows a Responsive page, as shown in the following screenshot:

4. In the device toolbar, choose iPhone 5, click Refresh or press F5, and note Chrome now shows the

“mobile” page template response with links instead of partial content, as shown in the following

screenshot:

Copyright © Episerver AB. All rights reserved.

Exercise C5 – Applying tags automatically using a display channel

Page 124

5. Close the developer tools.

6. Log in as a CMS admin.

7. Edit the Start page.

8. In the toolbar, click Toggle view settings, and select the mobile channel, as shown in the following

screenshot:

Improving the editors’ preview

You can combine a display channel with some common resolutions, and a background image, but this only

affects editors preview options. It has no affect at runtime for visitors.

1. In AlloyTraining, open ~\Business\DisplayChannels\MobileDisplayChannel.cs.

2. Define a class named iPhone5 that implements the IDisplayResolution interface, and use Visual

Studio to implement the interface, as shown in the following screenshot:

3. Return appropriate values for the four properties, as shown in the following code:

public class iPhone5 : IDisplayResolution
{
 public string Id => "iphone5";

Copyright © Episerver AB. All rights reserved.

Exercise C5 – Applying tags automatically using a display channel

Page 125

 public string Name => "iPhone 5 (320 x 568)";
 public int Width => 320;
 public int Height => 568;
}

4. Copy and paste the class for an iPhone4 resolution, as shown in the following code:

public class iPhone4 : IDisplayResolution
{
 public string Id => "iphone4";
 public string Name => "iPhone 4 (320 x 480)";
 public int Width => 320;
 public int Height => 480;
}

5. In MobileDisplayChannel, override the ResolutionId property, as shown in the following code:

public override string ResolutionId => "iphone5";

7. Right-click ~\Resources\LanguageFiles, and add a new XML file named DisplayChannels.xml.

8. Modify the file, as shown in the following markup:

<?xml version="1.0" encoding="utf-8" standalone="yes"?>
<languages>
 <language name="English" id="en">
 <displaychannels>
 <displaychannel name="mobile">
 <name>Mobile</name>
 </displaychannel>
 </displaychannels>
 <resolutions>
 <iphone4>iPhone 4 (320 x 480)</iphone4>
 <iphone5>iPhone 5 (320 x 568)</iphone5>
 </resolutions>
 </language>
 <language name="Swedish" id="sv">
 <displaychannels>
 <displaychannel name="mobile">
 <name>Mobil</name>
 </displaychannel>
 </displaychannels>
 <resolutions>
 <iphone4>iPhone 4 (320 x 480)</iphone4>
 <iphone5>iPhone 5 (320 x 568)</iphone5>
 </resolutions>
 </language>
</languages>

Testing the improvements

1. Start the AlloyTraining website, and log in as a CMS admin.

Copyright © Episerver AB. All rights reserved.

Exercise C5 – Applying tags automatically using a display channel

Page 126

2. In the page editing toolbar, click Toogle view settings, select Mobile, and note the default

resolution is iPhone 5, which has a built-in background image simulating that phone, as shown in

the following screenshot:

3. Select iPhone 4, and note that although it changes resolution, it does not have a background

image.

4. Close the browser.

5. From the solution files, drag and drop the \cmsdevfun-exercisefiles\Module C\C5\ClientResources

folder and the \cmsdevfun-exercisefiles\Module C\C5\module.config file into AlloyTraining, as

shown in the following screenshot:

6. Start the AlloyTraining website, and log in as a CMS admin, and select the iPhone 4 resolution, as

shown in the following screenshot:

7. Close the browser.

Copyright © Episerver AB. All rights reserved.

Exercise D1 – Creating a controller-less block for editorial content

Page 127

Module D – Working with Blocks

Goal

The overall goal of the exercises in this module is to implement working examples of various block types

and uses for blocks. You will:

1. Create a controller-less block for efficiency.

2. Create a block with a controller.

3. Create a preview template for blocks and partial pages.

4. Move important block properties to the basic info area.

5. Use a block type as a property type.

Exercise D1 – Creating a controller-less block for editorial content

In this exercise, you will create a block type with a block template that consists of a view without a

controller.

Controller-less blocks are more efficient than block templates with controllers, so you should use them

whenever possible.

Prerequisites: complete Exercises B1 to B4, C1 to C4.

Creating an editorial block type

1. In AlloyTraining, expand Models, right-click Blocks, and click Add | New Item…, or press Ctrl + Shift

+ A.

2. In Add New Item - AlloyTraining, navigate to Installed | Visual C# | Episerver, choose Block Type,

enter EditorialBlock.cs for the Name, and click Add.

3. Change the DisplayName to Editorial.

4. Add a Description of “Use this for a rich editorial text that will be reused in multiple places.”

5. Apply the [SiteBlockIcon] attribute to the class.

6. Add an XhtmlString property named MainBody, and allow it to be localized into multiple languages:

Your code should look something like the following:

using EPiServer.Core;
using EPiServer.DataAbstraction;
using EPiServer.DataAnnotations;
using System.ComponentModel.DataAnnotations;

namespace AlloyTraining.Models.Blocks
{
 [ContentType(DisplayName = "Editorial",
 GroupName = SiteGroupNames.Common,
 Description = "Use this for a rich editorial text that will be reused in
multiple places.")]
 [SiteBlockIcon]
 public class EditorialBlock : BlockData
 {
 [CultureSpecific]
 [Display(

Copyright © Episerver AB. All rights reserved.

Exercise D1 – Creating a controller-less block for editorial content

Page 128

 Name = "Main body",
 Description = "The main body will be shown in the main content area of the
page, using the XHTML-editor you can insert for example text, images and tables.",
 GroupName = SystemTabNames.Content,
 Order = 10)]
 public virtual XhtmlString MainBody { get; set; }
 }
}

Creating a controller-less block template

1. In AlloyTraining, right-click ~\Views\Shared, and choose Add | New Item…, or press Ctrl + Shift + A.

2. In Add New Item - AlloyTraining, navigate to Installed | Visual C# | Episerver, choose Page Partial

View (MVC Razor), enter EditorialBlock.cshtml for the name, and click Add.

3. Modify the view to use EditorialBlock as its model and to output the MainBody property to

support on-page editing, as shown in the following markup:

@model AlloyTraining.Models.Blocks.EditorialBlock
<div class="block span">
 @Html.PropertyFor(m => m.MainBody)
</div>

Creating an instance of the block and using it in multiple places

1. Start the AlloyTraining website, and log in as a CMS admin.

2. In Assets pane, click Blocks.

3. Add a new folder named Editorials to the For This Site folder.

4. In the Editorials folder, add a new Editorial block named Customer Quotes, as shown in the

following screenshot:

5. In the Main body write some quotes from Alloy’s customers, as shown in the following screenshot:

6. Publish the block and note that it is not current used anywhere.

Copyright © Episerver AB. All rights reserved.

Exercise D1 – Creating a controller-less block for editorial content

Page 129

7. Edit the Alloy Plan page, and drag and drop the Customer Quotes block into its Related content

area property, as shown in the following screenshot:

8. Publish the page.

9. Edit the Alloy Track page and drag and drop the Customer Quotes block into its Related content

area property.

10. Publish the page.

11. Edit the About us page, and drag and drop the Customer Quotes block into its Main body property,

as shown in the following screenshot:

12. Publish the page.

13. In the Assets pane, double-click Customer Quotes, and note the block now shows that it is

referenced on three items, as shown in the following screenshot:

14. Click 3 items, and note it shows the pages that reference the shared block, as shown in the

following screenshot:

15. Close the browser.

Copyright © Episerver AB. All rights reserved.

Exercise D2 – Creating a block with a controller for teaser content

Page 130

Exercise D2 – Creating a block with a controller for teaser content

In this exercise, you will create a block type with a block template that is a view with a controller.

Blocks with controllers are more resource hungry, so you should only use them when necessary. For

example, when content stored in the CMS must be combined with data from a web service, or a calculated

value. In this example, we will generate a random number for a visitor count that will be shown in the block.

Prerequisites: complete Exercises B1 to B4, C1 to C4.

Creating a teaser block type

1. In AlloyTraining, expand Models, right-click Blocks, and click Add | New Item…, or press Ctrl + Shift

+ A.

2. In Add New Item - AlloyTraining, navigate to Installed | Visual C# | Episerver, choose Block Type,

enter TeaserBlock.cs for the Name, and click Add.

3. Change the DisplayName to Teaser.

4. Add a Description of “Use this for rich text with heading, image and page link that will be reused in

multiple places.”

5. Apply the [SiteBlockIcon] attribute to the class.

6. Add the following four properties with appropriate attributes:

• TeaserHeading: string (with support for multiple languages)

• TeaserText: XhtmlString (with support for multiple languages)

• TeaserImage: ContentReference (images only)

• TeaserLink: PageReference

Your code should look something like the following:

using EPiServer.Core;
using EPiServer.DataAbstraction;
using EPiServer.DataAnnotations;
using EPiServer.Web;
using System.ComponentModel.DataAnnotations;

namespace AlloyTraining.Models.Blocks
{
 [ContentType(DisplayName = "Teaser",

 GroupName = SiteGroupNames.Common,
 Description = " Use this for rich text with heading, image and page link
that will be reused in multiple places.")]
 [SiteBlockIcon]
 public class TeaserBlock : BlockData
 {
 [CultureSpecific]
 [Display(Name = "Heading", Order = 10)]
 public virtual string TeaserHeading { get; set; }

 [CultureSpecific]
 [Display(Name = "Rich text", Order = 20)]
 public virtual XhtmlString TeaserText { get; set; }

 [Display(Name = "Image", Order = 30)]
 [UIHint(UIHint.Image)]

Copyright © Episerver AB. All rights reserved.

Exercise D2 – Creating a block with a controller for teaser content

Page 131

 public virtual ContentReference TeaserImage { get; set; }

 [Display(Name = "Link", Order = 40)]
 public virtual PageReference TeaserLink { get; set; }
 }
}

Creating a teaser view model, controller, and view

For complex content types, its content template is often a combination of: a controller, a view model, and a

view.

1. In AlloyTraining, right-click ViewModels, and click Add | New Item…, or press Ctrl + Shift + A.

2. In Add New Item - AlloyTraining, navigate to Installed | Visual C# | Code, choose Class, enter

TeaserBlockViewModel.cs for the Name, and click Add.

3. Modify the view model to have two properties: CurrentBlock and VisitorCount, as shown in the

following code:

using AlloyTraining.Models.Blocks;

namespace AlloyTraining.Models.ViewModels
{
 public class TeaserBlockViewModel
 {
 public TeaserBlock CurrentBlock { get; set; }
 public int TodaysVisitorCount { get; set; }
 }
}

4. In AlloyTraining, expand Controllers, and right-click and choose Add | New Item…, or press Ctrl +

Shift + A.

5. In Add New Item - AlloyTraining, navigate to Installed | Visual C# | Episerver, choose Block

Controller (MVC), enter TeaserBlockController.cs for the Name, and click Add.

6. Fix the compilation error by clicking the light bulb, and choose the option to import the

AlloyTraining.Models.Blocks namespace.

7. Modify the class to create an instance of the teaser view model and set its properties, before

passing it to a partial view, as shown in the following code:

using AlloyTraining.Models.Blocks;
using AlloyTraining.Models.ViewModels;
using EPiServer.Web.Mvc;
using System;
using System.Web.Mvc;

namespace AlloyTraining.Controllers
{
 public class TeaserBlockController : BlockController<TeaserBlock>
 {
 public override ActionResult Index(TeaserBlock currentBlock)
 {
 var viewmodel = new TeaserBlockViewModel
 {
 CurrentBlock = currentBlock,
 TodaysVisitorCount = (new Random()).Next(300, 900)
 };
 return PartialView(viewmodel);
 }
 }
}

Copyright © Episerver AB. All rights reserved.

Exercise D2 – Creating a block with a controller for teaser content

Page 132

 Random

8. In AlloyTraining, right-click Views, and add a new folder named TeaserBlock.

9. Right-click TeaserBlock, and choose Add | New Item…, or press Ctrl + Shift + A.

10. In Add New Item - AlloyTraining, navigate to Installed | Visual C# | Episerver, choose Page Partial

View (MVC Razor), enter Index.cshtml for the Name, and click Add.

11. Modify the view, as shown in the following markup:

@model AlloyTraining.Models.ViewModels.TeaserBlockViewModel
<div class="media">
 <div style="clear:both;">
 <div class="mediaImg">
 @Html.PropertyFor(m => m.CurrentBlock.TeaserImage)
 </div>
 <div class="mediaText">
 <h2 @Html.EditAttributes(m => m.CurrentBlock.TeaserHeading)>
 @Model.CurrentBlock.TeaserHeading
 </h2>
 <p>@Html.PropertyFor(m => m.CurrentBlock.TeaserText)</p>
 <small>There have been @Model.TodaysVisitorCount visitors today.</small>
 </div>
 </div>
</div>

Creating an instance of the teaser block

1. Start the AlloyTraining website, and log in as a CMS admin.

2. In Assets pane, click Media.

3. Add a new folder named People to the For This Site folder.

4. Upload the three images of people in the ~\Assets\People folder, as shown in the following

screenshot:

5. In Assets pane, click Blocks.

6. Add a new folder named Teasers to the For This Site folder.

Copyright © Episerver AB. All rights reserved.

Exercise D2 – Creating a block with a controller for teaser content

Page 133

7. Add a new Teaser block to the Teasers folder named Alloy Meet Customer Testimonial, as shown in

the following screenshot:

8. Add values for the properties, as shown in the following screenshot:

a. Heading: Sharing Worldwide

b. Rich text: "Alloy Meet is a highly effective e-solution for our operations. Improved business

metrics are realized through the cross-departmental sharing of information worldwide."

John Randle, HighTec Inc

c. Image: JohnRandle.jpg (use the picker or drag and drop from Assets pane)

d. Link: Alloy Meet (use the picker or drag and drop from Navigation pane)

9. Publish the block.

Copyright © Episerver AB. All rights reserved.

Exercise D2 – Creating a block with a controller for teaser content

Page 134

10. Edit the Start page, drag and drop the Alloy Meet Customer Testimonial to the top of its main

content area, and publish the page, as shown in the following screenshot:

Copyright © Episerver AB. All rights reserved.

Exercise D3 – Creating a preview renderer for partial pages and shared blocks

Page 135

Exercise D3 – Creating a preview renderer for partial pages and

shared blocks

In this exercise, you will create preview renderer for the teaser block.

The renderer will give previews of how the block will look when rendered with various templates.

Prerequisites: complete Exercises B1 – B4, C1 – C4, D2.

Creating three teaser block templates for full, wide, and narrow

1. In AlloyTraining, open TeaserBlockController.cs.

2. Copy and paste the statements that define the TeaserBlockController class so that you have three

controllers, and apply TemplateDescriptor to make the template resolver select them when the

tags: “full”, “wide”, and “narrow” have been applied, as shown in the following code:

using AlloyTraining.Models.Blocks;
using AlloyTraining.Models.ViewModels;
using EPiServer.Framework.DataAnnotations;
using EPiServer.Web.Mvc;
using System;
using System.Web.Mvc;

namespace AlloyTraining.Controllers
{
 [TemplateDescriptor(Tags = new[] { SiteTags.Full },
 AvailableWithoutTag = true)]
 public class TeaserBlockController : BlockController<TeaserBlock>
 {
 public override ActionResult Index(TeaserBlock currentBlock)
 {
 var viewmodel = new TeaserBlockViewModel
 {
 CurrentBlock = currentBlock,
 TodaysVisitorCount = (new Random()).Next(300, 900)
 };
 return PartialView(viewmodel);
 }
 }

 [TemplateDescriptor(Tags = new[] { SiteTags.Wide })]
 public class TeaserBlockWideController : BlockController<TeaserBlock>
 {
 public override ActionResult Index(TeaserBlock currentBlock)
 {
 var viewmodel = new TeaserBlockViewModel
 {
 CurrentBlock = currentBlock,
 TodaysVisitorCount = (new Random()).Next(300, 900)
 };
 return PartialView(viewmodel);
 }
 }

 [TemplateDescriptor(Tags = new[] { SiteTags.Narrow })]
 public class TeaserBlockNarrowController : BlockController<TeaserBlock>
 {
 public override ActionResult Index(TeaserBlock currentBlock)
 {
 var viewmodel = new TeaserBlockViewModel
 {

Copyright © Episerver AB. All rights reserved.

Exercise D3 – Creating a preview renderer for partial pages and shared blocks

Page 136

 CurrentBlock = currentBlock,
 TodaysVisitorCount = (new Random()).Next(300, 900)
 };
 return PartialView(viewmodel);
 }
 }
}

3. In Views folder, copy and paste the TeaserBlock folder twice to create two copies named:

TeaserBlockWide and TeaserBlockNarrow.

4. Open ~\Views\TeaserBlockNarrow\Index.cshtml.

5. Add class span4 to the outer <div>, and delete the <div> that outputs the image.

6. Open ~\Views\TeaserBlockWide\Index.cshtml.

7. Add class span8 to the outer <div>.

Creating a preview view model, controller, and view

When a content editor edits the teaser block, we would like them to see a preview of what the block would

look like if any of the three display options are selected. To do this, we need to simulate a page that has a

property that contains an instance of a block. We can do this by defining a view model with a ContentArea

and add the instance to the area. Then on the simulated page, we can easily output the block by calling

PropertyFor three times, once for each display option.

1. In AlloyTraining, expand Models, right-click ViewModels, and click Add | New Item…, or press Ctrl +

Shift + A.

2. In Add New Item - AlloyTraining, navigate to Installed | Visual C# | Code, choose Class, enter

PreviewPageViewModel.cs for the name, and click Add.

3. Modify the contents, as shown in the following code:

using AlloyTraining.Models.Pages;
using EPiServer.Core;

namespace AlloyTraining.Models.ViewModels
{
 public class PreviewPageViewModel : PageViewModel<SitePageData>
 {
 public PreviewPageViewModel(SitePageData currentPage,
 IContent contentToPreview) : base(currentPage)
 {
 this.PreviewArea = new ContentArea();
 this.PreviewArea.Items.Add(new ContentAreaItem
 { ContentLink = contentToPreview.ContentLink });
 }

 public ContentArea PreviewArea { get; set; }
 }
}

4. In AlloyTraining, expand Controllers, and right-click and choose Add | New Item…, or press Ctrl +

Shift + A.

5. In Add New Item - AlloyTraining, navigate to Installed | Visual C# | Code, choose Class, enter

PreviewPageController.cs for the Name, and click Add.

6. Modify its contents, as shown in the following code:

using AlloyTraining.Models.Pages;
using AlloyTraining.Models.ViewModels;
using EPiServer.Core;
using EPiServer.Framework.DataAnnotations;
using EPiServer.Framework.Web;

Copyright © Episerver AB. All rights reserved.

Exercise D3 – Creating a preview renderer for partial pages and shared blocks

Page 137

using EPiServer.ServiceLocation;
using EPiServer.Web;
using EPiServer.Web.Mvc;
using System.Web.Mvc;

namespace AlloyTraining.Controllers
{
 [TemplateDescriptor(Inherited = true,
 TemplateTypeCategory = TemplateTypeCategories.MvcController,
 Tags = new[] { RenderingTags.Preview },
 AvailableWithoutTag = false)]
 public class PreviewPageController :
 ActionControllerBase, IRenderTemplate<BlockData>
 {
 public ActionResult Index(IContent currentContent)
 {
 var loader = ServiceLocator.Current
 .GetInstance<EPiServer.IContentLoader>();
 var startPage = loader.Get<SitePageData>
 (ContentReference.StartPage);
 var viewmodel = new PreviewPageViewModel(
 startPage, currentContent);
 return View(viewmodel);
 }
 }
}

 CurrentPage

7. In AlloyTraining, right-click Views, and add a new folder named PreviewPage.

8. Right-click PreviewPage, and choose Add | New Item…, or press Ctrl + Shift + A.

9. In Add New Item - AlloyTraining, navigate to Installed | Visual C# | Episerver, choose Page Partial

View (MVC Razor), enter Index.cshtml for the Name, and click Add.

10. Modify the view, as shown in the following markup:

@using AlloyTraining
@using AlloyTraining.Models.ViewModels
@using EPiServer.Web.Mvc.Html
@model PreviewPageViewModel
@{
 Layout = null;
}
<head>
 <title>@(Model.CurrentPage.MetaTitle ?? Model.CurrentPage.Name)</title>
 <link rel="stylesheet" href="@Url.Content("~/Static/css/bootstrap.css")" />
 <link rel="stylesheet"
 href="@Url.Content("~/Static/css/bootstrap-responsive.css")" />
 <link rel="stylesheet" href="@Url.Content("~/Static/css/media.css")" />
 <link rel="stylesheet" href="@Url.Content("~/Static/css/style.css")" />
 <link rel="stylesheet" href="@Url.Content("~/Static/css/editmode.css")" />
 <script type="text/javascript"
 src="@Url.Content("~/Static/js/jquery.js")"></script>
 <script type="text/javascript"
 src="@Url.Content("~/Static/js/bootstrap.js")"></script>
</head>
<body>
 <div class="container">
 <div class="well well-large">

Copyright © Episerver AB. All rights reserved.

Exercise D3 – Creating a preview renderer for partial pages and shared blocks

Page 138

 <div class="row">
 <div class="alert alert-info">Display Option: Full (default)</div>
 </div>
 <div class="row">
 @Html.PropertyFor(m => m.PreviewArea, new { Tag = SiteTags.Full })
 </div>
 </div>
 <div class="well well-large">
 <div class="row">
 <div class="alert alert-info span8">Display Option: Wide</div>
 </div>
 <div class="row">
 @Html.PropertyFor(m => m.PreviewArea, new { Tag = SiteTags.Wide })
 </div>
 </div>
 <div class="well well-large">
 <div class="row">
 <div class="alert alert-info span4">Display Option: Narrow</div>
 </div>
 <div class="row">
 @Html.PropertyFor(m => m.PreviewArea, new { Tag = SiteTags.Narrow })
 </div>
 </div>
 </div>
</body>

Testing the preview

1. Start the AlloyTraining website, and log in as a CMS admin.

2. Edit the Alloy Meet Customer Testimonial teaser block, and note that instead of only allowing All

Properties view, it defaults to using an On-Page Editing view, and shows a preview of the Full

(default) display option, as shown in the following screenshot:

Copyright © Episerver AB. All rights reserved.

Exercise D3 – Creating a preview renderer for partial pages and shared blocks

Page 139

3. Scroll down the preview page to see the Wide display option, as shown in the following screenshot:

4. Scroll down the preview page to see the Narrow display option, as shown in the following

screenshot:

5. Close the browser.

Copyright © Episerver AB. All rights reserved.

Exercise D4 – Moving properties to the basic info area

Page 140

Exercise D4 – Moving properties to the basic info area

In this exercise, you will move a property from the tabbed area up to the basic info properties area.

Prerequisites: complete Exercises B1 – B4, C1 – C4, D2.

Understanding the existing basic info area

1. Start the AlloyTraining website, and log in as a CMS admin.

2. Edit the Start page. Note the on-page editing view contains several properties which are reached by

scrolling beyond the top of the page to reveal the top gray area. These are called basic info

properties and can be used to:

• Give the page a simple address.

• Set access rights for a page.

• Change the name in the URL, and so on.

This basic info area is always displayed in the All Properties editing view, as shown in the following

screenshot:

3. Edit the Alloy Meet Customer Testimonial teaser and view the basic information area. Note for a

block, like TeaserBlock, it cannot have a URL, a simple address, or display in navigation, so there is

empty space available that we can make better use of, as shown in the following screenshot:

Making use of space in the basic information area for blocks

1. In AlloyTraining, open ~/Models/Blocks/TeaserBlock.cs.

2. Modify the [Display] attribute for the TeaserHeading, TeaserImage, and TeaserLink properties to

set the GroupName to PageHeader, as shown in the following code:

[Display(Name = "Link", Order = 40,
 GroupName = SystemTabNames.PageHeader)]
public virtual PageReference TeaserLink { get; set; }

 SystemTabNames.PageHeader "EPiServerCMS_SettingsPanel"

3. Start the AlloyTraining website, and log in as a CMS admin.

4. Edit the Start page.

Copyright © Episerver AB. All rights reserved.

Exercise D4 – Moving properties to the basic info area

Page 141

5. In the main content area, edit the Alloy Meet Customer Testimonial teaser, switch to All Properties

view, and note the the three properties are now in the basic information area, as shown in the

following screenshot:

Copyright © Episerver AB. All rights reserved.

Exercise D5 – Using a block as a content property type

Page 142

Exercise D5 – Using a block as a content property type

In this exercise, you will define and use an employee block type as a property type.

Prerequisites: complete Exercises B1 to B4.

Using a block as a property type

1. In AlloyTraining, add an EmployeeBlock block type for storing information about employees:

FirstName, LastName, and HireDate, as shown in the following code:

using EPiServer.Core;
using EPiServer.DataAbstraction;
using EPiServer.DataAnnotations;
using System;
using System.ComponentModel.DataAnnotations;

namespace AlloyTraining.Models.Blocks
{
 [ContentType(DisplayName = "Employee",

 GroupName = SiteGroupNames.Specialized,
 Order = 10,

 Description = "Use this to store information about an employee.")]
 [SiteBlockIcon]
 public class EmployeeBlock : BlockData
 {
 [Display(Name = "First name",
 GroupName = SystemTabNames.Content,
 Order = 10)]
 public virtual string FirstName { get; set; }

 [Display(Name = "Last name",
 GroupName = SystemTabNames.Content,
 Order = 20)]
 public virtual string LastName { get; set; }

 [Display(Name = "Hire date",
 GroupName = SystemTabNames.Content,
 Order = 30)]
 public virtual DateTime? HireDate { get; set; }
 }
}

4. In AlloyTraining, right-click ~\Views\Shared, and choose Add | New Item…, or press Ctrl + Shift + A.

5. In Add New Item - AlloyTraining, navigate to Installed | Visual C# | Episerver, choose Page Partial

View (MVC Razor), enter EmployeeBlock.cshtml for the Name, and click Add.

6. Modify the view to use EmployeeBlock as its model and to output the FirstName, LastName, and

HireDate properties, as shown in the following markup:

@model AlloyTraining.Models.Blocks.EmployeeBlock
<div class="block span">
 @Model.FirstName @Model.LastName
 @(Model.HireDate.HasValue ? "was hired on " +
 Model.HireDate.Value.ToString("dddd, d MMMM yyyy") : "")
</div>

7. In AlloyTraining, open ~\Models\Pages\StandardPage.cs.

8. Import the blocks namespace, as shown in the following code:

using AlloyTraining.Models.Blocks;

9. Add a property, as shown in the following code:

Copyright © Episerver AB. All rights reserved.

Exercise D5 – Using a block as a content property type

Page 143

public virtual EmployeeBlock Author { get; set; }

10. In AlloyTraining, open ~\Views\StandardPage\Index.cshtml.

11. At the bottom of the view, render the Author property with support for on-page editing:

@Html.PropertyFor(m => m.CurrentPage.Author)

Testing the block type property

1. Start the AlloyTraining website, and log in as a CMS admin.

2. Edit the About us page, switch to All Properties view, and click the Content tab.

3. Modify the Author property’s three properties, as shown in the following screenshot:

4. Publish the page.

5. Switch to Live view and note the author’s details are rendered onto the page.

6. Close the browser.

Copyright © Episerver AB. All rights reserved.

Exercise E1 – Creating a page listing block

Page 144

Module E – Navigating Content

Goal

The overall goal of the exercises in this module is to implement various ways for a visitor to navigate a

website. You will:

1. Create a child page listing block.

2. Use the child page listing block in a page for navigating news articles.

3. Create a submenu for navigation.

4. Create a search page for visitors and implement it using Episerver Search or Episerver Find.

5. Add a search box to the top navigation menu.

Exercise E1 – Creating a page listing block

In this exercise, you will create a new block type containing a listing of child pages.

The block will have two properties; a heading and a page picker to select a parent page to show a list of its

children.

Prerequisites: complete Exercises B1 to B4.

Creating a page listing block type

1. In AlloyTraining, expand Models, right-click Blocks, and click Add | New Item…, or press Ctrl + Shift

+ A.

2. In Add New Item - AlloyTraining, navigate to Installed | Visual C# | Episerver, choose Block Type,

enter ListingBlock.cs for the name, and click Add.

3. Change the DisplayName to Listing.

4. Add a Description of “Choose a page in the tree, and its children will be listed, with a heading.”

5. Apply the [SiteBlockIcon] attribute to the class.

6. Add the following properties with appropriate attributes:

a. Heading: string

b. ShowChildrenOfThisPage: PageReference

Your code should look something like the following:

using EPiServer.Core;
using EPiServer.DataAbstraction;
using EPiServer.DataAnnotations;
using System.ComponentModel.DataAnnotations;

namespace AlloyTraining.Models.Blocks
{
 [ContentType(DisplayName = "Listing",

 GroupName = SiteGroupNames.Common,
 Description = "Choose a page in the tree, and its children will be
listed, with a heading.")]
 [SiteBlockIcon]
 public class ListingBlock : BlockData
 {

Copyright © Episerver AB. All rights reserved.

Exercise E1 – Creating a page listing block

Page 145

 [Display(Name = "Heading", Order = 10)]
 public virtual string Heading { get; set; }

 [Display(Name = "Show children of this page", Order = 20)]
 public virtual PageReference ShowChildrenOfThisPage { get; set; }
 }
}

Creating a page listing view model, controller, and view

1. In AlloyTraining, right-click ViewModels, and click Add | New Item…, or press Ctrl + Shift + A.

2. In Add New Item - AlloyTraining, navigate to Installed | Visual C# | Code, choose Class, enter

ListingBlockViewModel.cs for the name, and click Add.

3. Add two properties: Heading and Pages, as shown in the following code:

using EPiServer.Core;
using System.Collections.Generic;

namespace AlloyTraining.Models.ViewModels
{
 public class ListingBlockViewModel
 {
 public string Heading { get; set; }
 public IEnumerable<PageData> Pages { get; set; }
 }
}

4. In AlloyTraining, expand Controllers, and right-click and choose Add | New Item…, or press Ctrl +

Shift + A.

5. In Add New Item - AlloyTraining, navigate to Installed | Visual C# | Episerver, choose Block

Controller (MVC), enter ListingBlockController.cs for the Name, and click Add.

6. Fix the compilation error by clicking the light bulb, and choose the option to import the

AlloyTraining.Models.Blocks namespace.

7. Modify the class to create an instance of the listing block view model and set its properties, before

passing it to a partial view, as shown in the following code:

using AlloyTraining.Models.Blocks;
using AlloyTraining.Models.ViewModels;
using EPiServer;
using EPiServer.Core;
using EPiServer.Filters;
using EPiServer.Web.Mvc;
using System.Collections.Generic;
using System.Linq;
using System.Web.Mvc;

namespace AlloyTraining.Controllers
{
 public class ListingBlockController : BlockController<ListingBlock>
 {
 private readonly IContentLoader loader;

 public ListingBlockController(IContentLoader loader)
 {
 this.loader = loader;
 }

 public override ActionResult Index(ListingBlock currentBlock)
 {
 var viewmodel = new ListingBlockViewModel

Copyright © Episerver AB. All rights reserved.

Exercise E1 – Creating a page listing block

Page 146

 {
 Heading = currentBlock.Heading
 };

 if (currentBlock.ShowChildrenOfThisPage != null)
 {
 IEnumerable<PageData> children = loader.GetChildren<PageData>(
 currentBlock.ShowChildrenOfThisPage);

 // Remove pages:
 // 1. that are not published
 // 2. that the visitor does not have Read access to
 // 3. that do not have a page template
 IEnumerable<IContent> filteredChildren =
 FilterForVisitor.Filter(children);

 // 4. that do not have "Display in navigation" selected
 viewmodel.Pages = filteredChildren.Cast<PageData>()
 .Where(page => page.VisibleInMenu);
 }

 return PartialView(viewmodel);
 }
 }
}

8. In AlloyTraining, right-click Views, and add a new folder named ListingBlock.

9. Right-click ListingBlock, and choose Add | New Item…, or press Ctrl + Shift + A.

10. In Add New Item - AlloyTraining, navigate to Installed | Visual C# | Episerver, choose Page Partial

View (MVC Razor), enter Index.cshtml for the Name, and click Add.

11. Modify the view, as shown in the following markup, and note the following:

• When there are no pages to show, we render alert messages visible to content editors.

• PageData does not have a strongly-typed MainBody property, but the page it references might,

so we can use the Property property to check if the current page in the listing has a MainBody

and render it if it does.

@using EPiServer.Core
@model AlloyTraining.Models.ViewModels.ListingBlockViewModel
@if (Model.Pages == null)
{
 if (EPiServer.Editor.PageEditing.PageIsInEditMode)
 {
 <div class="label label-warning">Set the ShowChildrenOfThisPage property to a
page.</div>
 }
}
else
{
 <h2 @Html.EditAttributes(x => x.Heading)>@Model.Heading</h2>
 if (Model.Pages.Count() == 0)
 {
 <div class="label label-warning">The page selected has no children.</div>
 }
 foreach (PageData page in Model.Pages)
 {
 <div class="listresult theme1">
 <h3>@Html.ContentLink(page.ContentLink)</h3>
 @if (page.StartPublish.HasValue)
 {
 <p class="date">Published on

Copyright © Episerver AB. All rights reserved.

Exercise E1 – Creating a page listing block

Page 147

 @page.StartPublish.Value.ToString("dddd, d MMMM yyyy")
 </p>
 }
 @if (page.Property["MainBody"] != null)
 {
 @Html.Raw(page.Property["MainBody"].Value)
 }
 <hr />
 </div>
 }
}

Testing the page listing block

1. Start the AlloyTraining website, and log in as a CMS admin.

2. In Assets pane, click Blocks.

3. Add a new Listing block to the For This Site folder named

Children of Alloy Meet, as shown in the screenshot:

4. Switch to On-Page Editing view, and note the warning to

editors, as shown in the following screenshot:

5. Switch to All Properties view, and set the properties, as

shown in the screenshot:

a. Heading: Alloy Meet’s child pages

b. ShowChildrenOfThisPage: Alloy Meet

6. Switch to On-Page Editing view, and note the warning to

editors, as shown in the following screenshot:

7. Publish the block.

Copyright © Episerver AB. All rights reserved.

Exercise E1 – Creating a page listing block

Page 148

8. Edit the Start page, and drag and drop Children of Alloy Meet into the top of its main content area,

as shown in the following screenshot:

9. Publish the page.

10. Add some standard pages underneath Alloy Meet in the page tree,

named Alpha, Beta, and Gamma, as shown in the screenshot:

11. For each page, set their Main body properties using a Lorem Ipsum

generator.

12. Switch to Live view.

13. View the Start page, and note the output, as shown in the following screenshot:

14. Close the browser.

https://www.lipsum.com/

Copyright © Episerver AB. All rights reserved.

Exercise E2 – Creating a news landing page

Page 149

Exercise E2 – Creating a news landing page

In this exercise, you will create a news landing page type that lists news articles beneath it in the page tree.

You will use the standard page type as a base for the news landing page, you will use the page listing block

from the previous exercise to add a news listing function to the news landing page, and you will create

instances of the standard page under the news landing page to be its child news articles.

Prerequisites: complete Exercises B1 – B4, E1.

Creating a news landing page type

1. In AlloyTraining, expand Models, right-click Pages, and click Add | New Item…, or press Ctrl + Shift

+ A.

2. In Add New Item - AlloyTraining, navigate to Installed | Visual C# | Episerver, choose Page Type,

enter NewsLandingPage.cs for the Name, and click Add.

3. Modify the class to inherit from StandardPage.

4. Change the DisplayName to News Landing.

5. Add a Description of “Use this as a landing page for a list of news articles.”

6. Put the page in the News group.

7. Apply the [SitePageIcon] attribute to the class.

8. Delete the MainBody property.

9. Add a ListingBlock property named NewsListing with appropriate attributes.

Your code should look something like the following:

using AlloyTraining.Models.Blocks;
using EPiServer.DataAbstraction;
using EPiServer.DataAnnotations;
using System.ComponentModel.DataAnnotations;

namespace AlloyTraining.Models.Pages
{
 [ContentType(DisplayName = "News Landing",
 GroupName = SiteGroupNames.News,
 Description = "Use this as a landing page for a list of news
articles.")]
 [SitePageIcon]
 public class NewsLandingPage : StandardPage
 {
 [Display(Name = "News listing", Order = 315)]
 public virtual ListingBlock NewsListing { get; set; }
 }
}

Creating a news landing page template

1. In AlloyTraining, expand Controllers, and right-click and choose Add | New Item…, or press Ctrl +

Shift + A.

Copyright © Episerver AB. All rights reserved.

Exercise E2 – Creating a news landing page

Page 150

2. In Add New Item - AlloyTraining, navigate to Installed | Visual C# | Episerver, choose Page

Controller (MVC), enter NewsLandingPageController.cs for the Name, and click Add.

3. Fix the compilation error by clicking the light bulb, and choose the option to import the

AlloyTraining.Models.Pages namespace.

4. Modify the class to derive from PageControllerBase<T>, and the Index action method to use a view

model, as shown in the following code:

using AlloyTraining.Models.Pages;
using AlloyTraining.Models.ViewModels;
using System.Web.Mvc;

namespace AlloyTraining.Controllers
{
 public class NewsLandingPageController
 : PageControllerBase<NewsLandingPage>
 {
 public NewsLandingPageController(IContentLoader loader) : base(loader)
 {
 }

 public ActionResult Index(NewsLandingPage currentPage)
 {
 return View(CreatePageViewModel(currentPage));
 }
 }
}

5. In AlloyTraining, right-click Views, and add a new folder named NewsLandingPage.

6. Right-click NewsLandingPage, and choose Add | New Item…, or press Ctrl + Shift + A.

7. In Add New Item - AlloyTraining, navigate to Installed | Visual C# | Episerver, choose Page Partial

View (MVC Razor), enter Index.cshtml for the Name, and click Add.

8. Modify the view, as shown in the following markup:

@using AlloyTraining.Models.ViewModels
@using AlloyTraining.Models.Pages
@model PageViewModel<NewsLandingPage>
@{
 Layout = "~/Views/Shared/Layouts/_LeftNavigation.cshtml";
}
<h1 @Html.EditAttributes(m => m.CurrentPage.MetaTitle)>
 @(Model.CurrentPage.MetaTitle ?? Model.CurrentPage.Name)
</h1>
<p class="introduction">
 @Html.PropertyFor(m => m.CurrentPage.MetaDescription)
</p>
<div class="row">
 <div class="span8">
 @Html.PropertyFor(m => m.CurrentPage.MainBody)
 @Html.PropertyFor(m => m.CurrentPage.NewsListing)
 </div>
</div>

Testing the news landing page

1. Start the AlloyTraining website, and log in as a CMS admin.

2. Under About us, add a new News Landing page named News & Events.

3. In On-Page Editing view, click the News listing property.

Copyright © Episerver AB. All rights reserved.

Exercise E2 – Creating a news landing page

Page 151

4. Set Heading to The latest news for you, and Show children of this page to reference the News &

Events page, as shown in the following screenshot:

5. Publish the page.

6. Under News & Events, add two Standard pages named Alloy Saves Bears and Join Us at Our

Customer Event, and publish them.

7. View the News & Events page as a visitor and note the two news articles listed on the page.

8. Close the browser.

Copyright © Episerver AB. All rights reserved.

Exercise E3 – Improving navigation menus

Page 152

Exercise E3 – Improving navigation menus

In this exercise, you will replace the simple menu from an earlier exercise with a better-looking menu using

an extension method named MenuList.

The basics of what this MenuList helper does is that it allows you to define a markup template for each

item in your menu and it does filtering to remove unwanted items (for example, pages with no renderer can

be filtered out).

Prerequisites: complete Exercises B1 to B4.

Improving the top navigation menu

1. In AlloyTraining, open ~\Views\Shared_NavigationMenu.cshtml.

2. Modify the view, as shown in the following markup:

@using EPiServer.Core
@using AlloyTraining.Business.ExtensionMethods
@using AlloyTraining.Models.ViewModels
@using AlloyTraining.Models.Pages
@model IPageViewModel<SitePageData>
<div class="alloyMenu">
 <div class="navbar">
 <div class="navbar-inner">
 <div class="container">
 <a class="btn btn-navbar" data-toggle="collapse" data-target=".nav-
collapse">

 <div class="nav-collapse">
 <ul class="nav">
 <li
class="@(Model.CurrentPage.ContentLink.CompareToIgnoreWorkID(ContentReference.StartPag
e) ? "active" : null)">
 @Html.ContentLink(ContentReference.StartPage)

 @Html.MenuList(ContentReference.StartPage,
 @<li class="@(item.Selected ? "active" : null)">
 @Html.PageLink(item.Page)
)

 @if (User.Identity.IsAuthenticated)
 {
 Log out @User.Identity.Name
 }
 else
 {
 <a
href="@FormsAuthentication.LoginUrl?ReturnUrl=@Model.CurrentPage.PageLink.ExternalURLF
romReference()">Log in

Copyright © Episerver AB. All rights reserved.

Exercise E3 – Improving navigation menus

Page 153

 }

 </div>
 </div>
 </div>
 </div>
</div>

Adding a left navigation submenu

1. In AlloyTraining, right-click ~\Views\Shared, and choose Add | New Item…, or press Ctrl + Shift + A.

2. In Add New Item - AlloyTraining, navigate to Installed | Visual C# | Episerver, choose Page Partial

View (MVC Razor), enter _LeftNavigationMenu.cshtml for the Name, and click Add.

3. Modify the view, as shown in the following markup:

@using AlloyTraining.Models.ViewModels
@using AlloyTraining.Models.Pages
@using AlloyTraining.Business.ExtensionMethods
@model IPageViewModel<SitePageData>
@helper ItemTemplate(MenuItem firstLevelItem)
{
 <div class="accordion-heading">
 <a href="@Url.ContentUrl(firstLevelItem.Page.PageLink)"
class="@(firstLevelItem.Page.ContentLink.CompareToIgnoreWorkID(Model.CurrentPage.Conte
ntLink) ? "accordion-toggle active" : "accordion-toggle")" data-parent="#alloyDrop">
 @firstLevelItem.Page.PageName
 <i class="@(firstLevelItem.HasChildren.Value ? "icon-chevron-down right" :
"right")"></i>

 </div>
 <div id="collapse-@firstLevelItem.Page.ContentLink.ID" class="accordion-body
collapse @(firstLevelItem.Selected ? "in" : "")">

 @Html.MenuList(firstLevelItem.Page.ContentLink, SubLevelItemTemplate)

 </div>
}
@helper SubLevelItemTemplate(MenuItem subLevelItem)
{
 <li class="@(subLevelItem.Selected ? "active" : null)">
 @Html.PageLink(subLevelItem.Page)
 @*To show more levels call Html.MenuList recursively here if
subLevelItem.Selected == true*@

}
<div id="alloyDrop" class="accordion">
 <div class="accordion-group">
 @if (Model.Section != null)
 {
 @Html.MenuList(Model.Section.ContentLink, ItemTemplate)
 }
 </div>
</div>

4. Open ~\Views\Shared\Layouts_LeftNavigation.cshtml.

5. Add a statement to render the _LeftNavigationMenu, inside <div class="span4">, as shown in

the following markup:

Copyright © Episerver AB. All rights reserved.

Exercise E3 – Improving navigation menus

Page 154

@Html.Partial("_LeftNavigationMenu", Model)

6. Start AlloyTraining website, and navigate to About us | News & Events, and note the top and left

navigation menus, as shown in the following screenshot:

7. Close the browser.

Copyright © Episerver AB. All rights reserved.

Exercise E4 – Creating a search page for visitors

Page 155

Exercise E4 – Creating a search page for visitors

In this exercise, you will add a search page to the AlloyTraining site, allowing visitors to perform free-text

searches on pages using either Episerver Find or Episerver Search.

Prerequisites: complete Exercises B1 to B4.

Signing up for a free Episerver Find index

1. Open a web browser and navigate to http://find.episerver.com/

2. Click Sign up for a demo index or Sign Up in the top right corner.

3. Fill in the required information and click Register.

4. When the verification email arrives, copy and paste the link into your browser’s address box and

press ENTER to confirm your address and activate the index.

5. On the E-mail Activation verification page, click My Services, as shown in the following screenshot:

6. In My Services, click Add Developer Service.

7. Fill in a name for your index. The name is technically irrelevant but should preferably represent

what you’re using the index for, such as, CustomerNameTestIndex.

Copyright © Episerver AB. All rights reserved.

Exercise E4 – Creating a search page for visitors

Page 156

8. Select at least English, Swedish, and Danish from the list of languages, check the terms and

conditions checkbox, and click Create Service, as shown in the following screenshot:

9. You should now see a list of details about your index. Note the Status: it will probably be

NotCreated, as shown in the following screenshot. If you wait a minute and refresh the page, it

should say CreatedWithStats.

10. Note the Configuration, as shown in the following screenshot. In the next section, you will copy and

paste this into the site’s Web.config.

Installing and configuring Episerver Find

1. Open the solution with the AlloyTraining project.

2. Navigate to Tools | NuGet Package Manager | Package Manager Console.

Copyright © Episerver AB. All rights reserved.

Exercise E4 – Creating a search page for visitors

Page 157

3. Enter the following commands:

Install-Package -ProjectName AlloyTraining EPiServer.Find.Cms
Update-EPiDatabase

4. Open ~\Web.config.

5. Add the following to the <configSections> element (you can copy and paste it from the Find

Configuration page):

<section name="episerver.find" requirePermission="false"
 type="EPiServer.Find.Configuration, EPiServer.Find" />

6. Add the following to the <configuration> element (you must copy and paste it from your Find

Configuration page because your serviceURL contains a unique private account key):

<episerver.find
 serviceUrl="https://es-eu-api01.episerver.net/PlS....kxv"
 defaultIndex="episervertraining_index58384"/>

7. Start the site, and log in as a CMS admin.

8. Navigate to CMS | Admin | Admin | Scheduled Jobs | EPiServer Find Content Indexing Job.

9. Click Start Manually, and wait for the job to complete, as shown in the following screenshot:

10. Click History. Note the number of content items indexed, as shown in the following screenshot:

11. In the Global menu, click inside the Search box, and enter track. You should see multiple matches,

with results shown from both Episerver Search (labeled Files and Pages) and Episerver Find

(labeled Find files and Find pages), as shown in the following screenshot:

Copyright © Episerver AB. All rights reserved.

Exercise E4 – Creating a search page for visitors

Page 158

12. Navigate to CMS | Admin | Config | Search Configuration. Note how the Search Providers have

check boxes to disable them in Global Search, and they can be dragged and dropped to change the

order in which they are called and displayed in the search results.

Reviewing the administrator’s view of Episerver Find

1. In the Global menu, navigate to Find | Overview, as shown in the following screenshot:

2. Click the green box to slide out the Explore area, as shown in the following screenshot:

3. Close the browser.

Creating a search page type

These steps apply for both Episerver Search and Episerver Find.

1. In AlloyTraining, expand Models, right-click Pages, and click Add | New Item…, or press Ctrl + Shift

+ A.

Copyright © Episerver AB. All rights reserved.

Exercise E4 – Creating a search page for visitors

Page 159

2. In Add New Item - AlloyTraining, navigate to Installed | Visual C# | Episerver, choose Page Type,

enter SearchPage.cs for the Name, and click Add.

3. Modify the class to inherit from StandardPage.

4. Change the DisplayName to Search.

5. Group the page type under Specialized.

6. Add a Description of “Use this to enable visitors to search for pages and media on the site.”

7. Apply the [SiteSearchIcon] attribute to the class.

8. Delete the MainBody property.

Your code should look something like the following:

using EPiServer.DataAbstraction;
using EPiServer.DataAnnotations;

namespace AlloyTraining.Models.Pages
{
 [ContentType(DisplayName = "Search",
 GroupName = SiteGroupNames.Specialized, Order = 30,
 Description = "Use this to enable visitors to search for pages and
media on the site.")]
 [SiteSearchIcon]
 public class SearchPage : StandardPage
 {
 }
}

Creating a search page view model

1. In AlloyTraining, expand Models, right-click ViewModels, and click Add | New Item…, or press Ctrl +

Shift + A.

2. In Add New Item - AlloyTraining, navigate to Installed | Visual C# | Code, choose Class, enter

SearchPageViewModel.cs for the Name, and click Add.

3. Inherit from PageViewModel<SearchPage> and fix the compile error using autofix to add the

required constructor.

4. Modify the contents, to add some properties for the visitor’s free-text search term and for the

results, as shown in the following code:

using AlloyTraining.Models.Pages;
using System.Collections.Generic;

namespace AlloyTraining.Models.ViewModels
{
 public class SearchPageViewModel : PageViewModel<SearchPage>
 {
 public SearchPageViewModel(SearchPage currentPage) : base(currentPage)
 {
 }

 public string SearchText { get; set; }
 public List<Result> SearchResults { get; set; }
 }

 public class Result
 {
 public string Title { get; set; }
 public string Description { get; set; }
 public string Url { get; set; }
 }

Copyright © Episerver AB. All rights reserved.

Exercise E4 – Creating a search page for visitors

Page 160

}

Implementing a search page controller using Episerver Find

1. In AlloyTraining, expand Controllers, and right-click and choose Add | New Item…, or press Ctrl +

Shift + A.

2. In Add New Item - AlloyTraining, navigate to Installed | Visual C# | Episerver, choose Page

Controller (MVC), enter SearchPageController.cs for the name, and click Add.

3. Fix the compilation error by clicking the light bulb, and choose the option to import the

AlloyTraining.Models.Pages namespace.

4. Modify the class to inherit from PageControllerBase, create an instance of the search page view

model and set its properties, before passing it to a view, as shown in the following code:

using AlloyTraining.Business.ExtensionMethods;
using AlloyTraining.Models.Pages;
using AlloyTraining.Models.ViewModels;
using EPiServer.Find;
using EPiServer.Find.Cms;
using EPiServer.Find.Framework;
using EPiServer.Security;
using System.Linq;
using System.Web.Mvc;

namespace AlloyTraining.Controllers
{
 public class SearchPageController : PageControllerBase<SearchPage>
 {
 public SearchPageController(IContentLoader loader) : base(loader)
 {
 }

 public ActionResult Index(SearchPage currentPage, string q)
 {
 var viewmodel = new SearchPageViewModel(currentPage);

 viewmodel.StartPage = loader.Get<StartPage>(ContentReference.StartPage);

 viewmodel.MenuPages = FilterForVisitor.Filter(
 loader.GetChildren<SitePageData>(ContentReference.StartPage))
 .Cast<SitePageData>().Where(page => page.VisibleInMenu);

 viewmodel.Section = currentPage.ContentLink.GetSection();

 if (!string.IsNullOrWhiteSpace(q))
 {
 var query = SearchClient.Instance
 .Search<SitePageData>() // 1. only pages
 .For(q) // 2. free-text query
 // 3. only what the current user can read
 .FilterForVisitor()
 // 4. only under the Start page (to exclude Wastebasket)
 .FilterOnCurrentSite();

Copyright © Episerver AB. All rights reserved.

Exercise E4 – Creating a search page for visitors

Page 161

 var results = query.GetContentResult();

 viewmodel.SearchText = q;

 viewmodel.SearchResults = results
 .Select(x => new Result
 {
 Title = x.MetaTitle ?? x.Name,
 Description = x.MetaDescription?.TruncateAtWord(20),
 Url = x.PageLink.ExternalURLFromReference()
 }).ToList();
 }
 return View(viewmodel);
 }
 }
}

Implementing a search page controller using Episerver Search

1. In AlloyTraining, expand Controllers, and right-click and choose Add | New Item…, or press Ctrl +

Shift + A.

2. In Add New Item - AlloyTraining, navigate to Installed | Visual C# | Episerver, choose Page

Controller (MVC), enter SearchPageController.cs for the Name, and click Add.

3. Fix the compilation error by clicking the light bulb, and choose the option to import the

AlloyTraining.Models.Pages namespace.

4. Modify the class to inherit from PageControllerBase, create an instance of the search page view

model and set its properties, before passing it to a view, using extension methods to generate the

URL to the page and to truncate the descriptions of the pages to 20 words each, as shown in the

following code:

using AlloyTraining.Business.ExtensionMethods;
using AlloyTraining.Models.Pages;
using AlloyTraining.Models.ViewModels;
using EPiServer.Core;
using EPiServer.Filters;
using EPiServer.Search;
using EPiServer.Search.Queries.Lucene;
using EPiServer.Security;
using System.Linq;
using System.Web.Mvc;

namespace AlloyTraining.Controllers
{
 public class SearchPageController : PageControllerBase<SearchPage>
 {
 private readonly SearchHandler searchHandler;

 public SearchPageController(IContentLoader loader,
 SearchHandler searchHandler) : base(loader)
 {
 this.searchHandler = searchHandler;
 }

 public ActionResult Index(SearchPage currentPage, string q)
 {
 var viewmodel = new SearchPageViewModel(currentPage);

Copyright © Episerver AB. All rights reserved.

Exercise E4 – Creating a search page for visitors

Page 162

 viewmodel.StartPage = loader.Get<StartPage>(ContentReference.StartPage);

 viewmodel.MenuPages = FilterForVisitor.Filter(
 loader.GetChildren<SitePageData>(ContentReference.StartPage))
 .Cast<SitePageData>().Where(page => page.VisibleInMenu);

 viewmodel.Section = currentPage.ContentLink.GetSection();

 if (!string.IsNullOrWhiteSpace(q))
 {
 // 1. only pages
 var onlyPages = new ContentQuery<SitePageData>();

 // 2. free-text query
 var freeText = new FieldQuery(q);

 // 3. only what the current user can read
 var readAccess = new AccessControlListQuery();
 readAccess.AddAclForUser(PrincipalInfo.Current, HttpContext);

 // 4. only under the Start page (to exclude Wastebasket, for example)
 var underStart = new VirtualPathQuery();
 underStart.AddContentNodes(ContentReference.StartPage);

 // build the query from the expressions
 var query = new GroupQuery(LuceneOperator.AND);
 query.QueryExpressions.Add(freeText);
 query.QueryExpressions.Add(onlyPages);
 query.QueryExpressions.Add(readAccess);
 query.QueryExpressions.Add(underStart);

 // get the first page of ten results
 SearchResults results = searchHandler.GetSearchResults(query, 1, 10);

 viewmodel.SearchText = q;

 viewmodel.SearchResults = results.IndexResponseItems
 .Select(item => new Result
 {
 Title = item.Title,
 Description = item.DisplayText?.TruncateAtWord(20),
 Url = ConvertToUri(item).ToString()
 }).ToList();
 }
 return View(viewmodel);
 }

 private Uri ConvertToUri(IndexResponseItem item)
 {
 try
 {
 var url = new UrlBuilder(item.Uri);
 Global.UrlRewriteProvider.ConvertToExternal(url, item, Encoding.UTF8);
 return url.Uri;
 }
 catch
 {
 return default(Uri);
 }
 }
 }

Copyright © Episerver AB. All rights reserved.

Exercise E4 – Creating a search page for visitors

Page 163

}

Creating a search page view

1. In AlloyTraining, right-click Views, and add a new folder named SearchPage.

2. Right-click SearchPage, and choose Add | New Item…, or press Ctrl + Shift + A.

3. In Add New Item - AlloyTraining, navigate to Installed | Visual C# | Episerver, choose Page Partial

View (MVC Razor), enter Index.cshtml for the Name, and click Add.

4. Modify the view, as shown in the following markup, and note the following:

a. To support searching in Edit view, the form must POST instead of GET.

b. If there is search text, the Search Results are shown, and then either shows a warning if

there are no matches, or the total hits and the list of results.

@using AlloyTraining.Models.ViewModels
@using EPiServer.Editor
@model SearchPageViewModel
<div class="row">
 <div class="span8">
 @using (Html.BeginForm(actionName: null,
 controllerName: null, routeValues: null,
 method: PageEditing.PageIsInEditMode ? FormMethod.Post : FormMethod.Get))
 {
 <input tabindex="1" name="q" value="@Model.SearchText" />
 <input type="submit" tabindex="2" class="btn" value="Search" />
 }
 @if (!string.IsNullOrWhiteSpace(Model.SearchText))
 {
 <div class="row">
 <div class="span8 grayHead">
 <h2>Search Results</h2>
 </div>
 </div>
 if (Model.SearchResults.Count == 0)
 {
 <div class="row">
 <div class="span8 SearchResults">
 No matching results.
 </div>
 </div>
 }
 else
 {
 <div class="row">
 <div class="span8 SearchResults">
 @Model.SearchResults.Count
matching results.
 @foreach (var item in Model.SearchResults)
 {
 <div class="listResult">
 <h3>@item.Title</h3>
 <p>@item.Description</p>
 <hr />
 </div>
 }
 </div>
 </div>
 }
 }
 </div>

Copyright © Episerver AB. All rights reserved.

Exercise E4 – Creating a search page for visitors

Page 164

 <div class="span4">
 @Html.PropertyFor(m => m.CurrentPage.MainBody)
 </div>
</div>

Creating and testing the search page

1. Start the AlloyTraining website, and log in as a CMS

admin.

2. Add a new Search page named Search under the

Start page.

3. Publish the Search page.

4. Switch to Live view and click Search to navigate to

the Search page as a visitor.

5. Enter the search text track, and press ENTER or

click Search, as shown in the screenshot:

Resetting the search index for Episerver Find

1. Navigate to Find | Configure | Index.

2. Click Clear Index, as shown in the following screenshot:

Resetting the search index for Episerver Search

1. Navigate to CMS | Admin | Admin | Tools | Index Site Content, as shown in the following

screenshot:

2. Note the date and time of the latest complete indexing, and then click Start Indexing.

3. Press F5 to refresh the page and see the latest complete indexing date and time.

Copyright © Episerver AB. All rights reserved.

Exercise E5 – Adding a search box to the top navigation menu

Page 165

Exercise E5 – Adding a search box to the top navigation menu

In this exercise, you will implement a search box to use the logic that was added in the Search Page in the

previous exercise to perform searches from other places in your site, giving visitors to the site a better

experience and more options.

You will add a search field and a button to the existing main navigation control, add a new property to the

start page that holds a reference to the Search page and then write logic that, when the search button in

the main navigation is clicked, adds the search text to the query string and does a redirect to the search

page.

Prerequisites: complete Exercises B1 – B4, E4.

Adding a property to the Start page to reference the Search page

1. In AlloyTraining, open ~\Models\Pages\StartPage.cs, and add a property to reference an instance

of the search page type, as shown in the following code:

[Display(Name = "Search page",
 Description = "If you add a Search page to the site, set this property to
reference it to enable search from every page.",
 GroupName = SiteTabNames.SiteSettings,
 Order = 40)]
[AllowedTypes(typeof(SearchPage))]
public virtual PageReference SearchPageLink { get; set; }

Adding a search box to the navigation menu

1. In AlloyTraining, open ~\Views\Shared_NavigationMenu.cshtml.

2. At the top of the view, add a statement to import Alloy’s extension methods, as shown in the

following code:

@using AlloyTraining.Business.ExtensionMethods

3. After the element, inside the nested <div> elements, add the following markup:

<div class="navbar-search pull-right">
 @if (Model.StartPage != null)
 {
 @if (PageReference.IsNullOrEmpty(Model.StartPage.SearchPageLink))
 {
 if (EPiServer.Editor.PageEditing.PageIsInEditMode)
 {
 <div class="alert alert-danger">To enable search across the site,
 set the SearchPageLink property.</div>
 }
 }
 else
 {
 <form action="@Model.StartPage.SearchPageLink.ExternalURLFromReference()"
 method="post">
 <input type="text" class="search-query" name="q"
 id="SearchKeywords" placeholder="Search" />
 <input type="submit" class="searchButton" id="SearchButton" value="" />
 </form>

Copyright © Episerver AB. All rights reserved.

Exercise E5 – Adding a search box to the top navigation menu

Page 166

 }
 }
</div>

Enable the search box and test the website

1. Start the AlloyTraining website, and log in as a CMS admin.

2. Edit the Start page, and note the warning for editors, as shown in the following screenshot:

3. Switch to All Properties view, click Site Settings, and set the Search page property to reference the

Search page, as shown in the following screenshot:

4. Publish the Start page.

5. Switch to Live view.

6. Navigate to any page, enter track in the search box, click the search button or press ENTER, and

note you are directed to the Search page to see the results.

Copyright © Episerver AB. All rights reserved.

Exercise F1 – Exporting and importing content

Page 167

Module F – Working with Episerver Framework

Goal

The overall goal of the exercises in this module is to learn how to work with Episerver Framework and

content APIs. You will:

1. Export and import content.

2. Implement FAQs by programmatically creating pages using content APIs.

3. Validate content by listening for publishing events.

4. Process content by implementing a scheduled job.

5. Decompile Episerver assemblies to better understand how to work with our APIs.

Exercise F1 – Exporting and importing content

In this exercise, you will export data from an Episerver CMS site, and then import it back in as if it were new

content.

Prerequisites: complete Exercise A1.

Exporting news & events from AlloyDemo website

1. Open the Training solution with the AlloyDemo project.

2. Start the AlloyDemo website, and log in as Admin.

3. Navigate to CMS | Admin | Admin | Tools | Export Data, as shown in the following screenshot:

4. Click Export content items, and select News & Events, and note that by default the export will

include sub items and any files (media assets) that the pages link to, as shown in the following

screenshot:

Copyright © Episerver AB. All rights reserved.

Exercise F1 – Exporting and importing content

Page 168

5. Click Test Run with Error Log, and note that you get no errors or warnings, as shown in the

following screenshot:

6. Click Export.

7. Start File Explorer, open your Downloads folder, and note that a file has been created named

ExportedFile.episerverdata, as shown in the following screenshot:

8. Copy the file, and change its file extension to ZIP.

9. Open the ZIP file, and note the contents, as shown in the following screenshot:

Importing news & events to AlloyDemo website

1. Start the AlloyDemo website, and log in as Admin.

2. Navigate to CMS | Admin | Admin | Tools | Import Data, choose the ExportedFile.episerverdata

file, and select Alloy Plan as the content destination.

Copyright © Episerver AB. All rights reserved.

Exercise F1 – Exporting and importing content

Page 169

3. Clear the Update existing content items with matching ID check box, and click Begin Import, as

shown in the following screenshot:

4. After a few moments, the import should complete, as shown in the following screenshot:

5. Navigate to CMS | Edit, and expand the Pages tree to see that Alloy Plan now has some new child

pages, as shown in the following screenshot:

Copyright © Episerver AB. All rights reserved.

Exercise F2 – Implementing FAQs with content APIs

Page 170

Exercise F2 – Implementing FAQs with content APIs

In this exercise, you will implement FAQs by implementing data pages and automating their creation using

the content repository API.

You will create two page types; one to be used as the visible FAQListPage containing both a form for visitors

to enter a question and a listing of answered questions, and one named FAQItemPage that will act as a

data page for a single question and its answer.

Here’s an example of an FAQ page with one question answered:

Prerequisites: complete Exercise A1.

Create an FAQ item data page type and an FAQ list page type

The FAQItemPage will not have a template because it will just store data, but we want it to be created as a

child of a FAQListPage that will have a page template that shows a list of its children.

1. Open the Training solution with the AlloyDemo project.

2. In Solution Explorer, in AlloyDemo, expand Models, right-click Pages, and click Add | New Item…, or

press Ctrl + Shift + A.

3. In Add New Item - AlloyDemo, navigate to Installed | Visual C# | Episerver, choose Page Type,

enter FAQItemPage.cs for the Name, and click Add.

4. Change the DisplayName to FAQ Item.

5. Add a Description of “A data page for an FAQ item (cannot be created by editors).”

6. Add the AvailableInEditMode parameter and set it to false.

7. Delete the MainBody property.

8. Add the following properties with appropriate attributes:

a. Question: XhtmlString

b. Answer: XhtmlString

Your code should look something like the following:

using EPiServer.Core;
using EPiServer.DataAbstraction;
using EPiServer.DataAnnotations;

Copyright © Episerver AB. All rights reserved.

Exercise F2 – Implementing FAQs with content APIs

Page 171

using System.ComponentModel.DataAnnotations;

namespace AlloyDemo.Models.Pages
{
 [ContentType(DisplayName = "FAQ Item",
 Description = "A data page for an FAQ item (cannot be created by editors).",
 AvailableInEditMode = false)]
 public class FAQItemPage : PageData
 {
 [Display(Name = "Question", Order = 10)]
 public virtual XhtmlString Question { get; set; }

 [Display(Name = "Answer", Order = 20)]
 public virtual XhtmlString Answer { get; set; }
 }
}

9. In AlloyDemo, expand Models, right-click Pages, and click Add | New Item…, or press Ctrl + Shift +

A.

10. In Add New Item - AlloyDemo, navigate to Installed | Visual C# | Episerver, choose Page Type,

enter FAQListPage.cs for the name, and click Add.

11. Change the DisplayName to FAQ List.

12. Group the page type under Specialized by using a constant in Global.GroupNames.

13. Add a Description of “Use this page for a list of FAQs entered by visitors, answered by editors.”

14. Apply the SiteImageUrl attribute to the class.

15. Apply an attribute to restrict this page types children to only be FAQItemPage instances.

16. Inherit from SitePageData.

17. Delete the MainBody property.

18. Add a property named FAQItems that can contain the child FAQ item pages and apply the Ignore

attribute to it.

Your code should look something like the following:

using EPiServer.DataAbstraction;
using EPiServer.DataAnnotations;
using System.Collections.Generic;

namespace AlloyDemo.Models.Pages
{
 [ContentType(DisplayName = "FAQ List",
 GroupName = Global.GroupNames.Specialized,
 Description = "Use this page for a list of FAQs entered by visitors,
answered by editors.")]
 [SiteImageUrl]
 [AvailableContentTypes(Include = new[] { typeof(FAQItemPage) },
 IncludeOn = new[] { typeof(StartPage) })]
 public class FAQListPage : SitePageData
 {
 // having an ignored property avoids needing a view model
 // this property will not be stored in CMS so it does not
 // need to be virtual
 [Ignore]
 public IEnumerable<FAQItemPage> FAQItems { get; set; }
 }

Copyright © Episerver AB. All rights reserved.

Exercise F2 – Implementing FAQs with content APIs

Page 172

}

Creating an FAQ list page template

1. In AlloyDemo, expand Controllers, and right-click and choose Add | New Item…, or press Ctrl + Shift

+ A.

2. In Add New Item - AlloyDemo, navigate to Installed | Visual C# | Episerver, choose Page Controller

(MVC), enter FAQListPageController.cs for the Name, and click Add.

3. Fix the compilation error by clicking the light bulb, and choose the option to import the

AlloyDemo.Models.Pages namespace.

4. Modify the class to derive from PageControllerBase<T>.

5. Modify the Index action method to use a view model and set the FAQItems property using the

content loader service.

6. Add a CreateFAQItem method, with two parameters: currentPage and question.

7. Use the content repository service to add a new FAQ item page under the current page, setting its

Question property to the question parameter, and giving it a Name.

8. Save and check in the new FAQ item page if the current user has Read access rights.

Your controller should look something like the following code:

using AlloyDemo.Models.Pages;
using AlloyDemo.Models.ViewModels;
using EPiServer;
using EPiServer.Core;
using System.Web.Mvc;

namespace AlloyDemo.Controllers
{
 public class FAQListPageController : PageControllerBase<FAQListPage>
 {
 private readonly IContentRepository repo;

 public FAQListPageController(IContentRepository repo)
 {
 this.repo = repo;
 }

 public ActionResult Index(FAQListPage currentPage)
 {
 var viewmodel = PageViewModel.Create(currentPage);
 var faqs = repo.GetChildren<FAQItemPage>(currentPage.ContentLink);
 viewmodel.CurrentPage.FAQItems = faqs;
 return View(viewmodel);
 }

 public ActionResult CreateFAQItem(FAQListPage currentPage, string question)
 {
 var faqItem = repo.GetDefault<FAQItemPage>(currentPage.ContentLink);

 // if someone is logged in then CreatedBy and ChangedBy will be set,
 // otherwise they will be empty string which is shown as "installer"
 if (string.IsNullOrEmpty(faqItem.CreatedBy))

 faqItem.CreatedBy = "Anonymous";
 if (string.IsNullOrEmpty(faqItem.ChangedBy))
 faqItem.ChangedBy = "Anonymous";

 faqItem.Question = new XhtmlString(question);
 faqItem.Name = "Q. " + question;
 repo.Save(faqItem,

Copyright © Episerver AB. All rights reserved.

Exercise F2 – Implementing FAQs with content APIs

Page 173

 EPiServer.DataAccess.SaveAction.CheckOut,
 EPiServer.Security.AccessLevel.Read);

 return RedirectToAction("Index");
 }
 }
}

9. In AlloyDemo, right-click Views, and add a new folder named FAQListPage.

10. Right-click FAQListPage, and choose Add | New Item…, or press Ctrl + Shift + A.

11. In Add New Item - AlloyDemo, navigate to Installed | Visual C# | Episerver, choose Page Partial

View (MVC Razor), enter Index.cshtml for the Name, and click Add.

12. Modify the view, as shown in the following markup, and note the following:

a. The question form submits back to the CreateFAQItem action method.

b. Content editors see a warning message.

c. Each FAQ item outputs its: question and when it was asked, and the answer and who and

when it was answered.

@model AlloyAdvanced.Models.ViewModels.PageViewModel<FAQListPage>
<h2>Alloy FAQs</h2>
<div class="navbar">
 <h3>Enter your question</h3>
 @using (Html.BeginForm(actionName: "CreateFAQItem", controllerName: null))
 {
 <input type="text" tabindex="1" name="question"
 placeholder="Enter your question" />
 <input type="submit" tabindex="2" class="btn" value="Submit" />
 }
</div>
@if (EPiServer.Editor.PageEditing.PageIsInEditMode)
{
 <div class="alert alert-info">Questions do not appear until they have been
answered by a content editor and published.</div>
}
<div class="nav-stacked">
 <h2>Questions with answers</h2>
 @foreach (var faqItem in Model.CurrentPage.FAQItems)
 {
 <div class="alert alert-success">
 <p><small class="label label-inverse">Asked at
@faqItem.Created.ToShortTimeString() on
@faqItem.Created.ToShortDateString()</small></p>
 @Html.DisplayFor(m => faqItem.Question)
 <p><small class="label label-inverse">Answered by @faqItem.ChangedBy at
@faqItem.StartPublish.Value.ToShortTimeString() on
@faqItem.StartPublish.Value.ToShortDateString()</small></p>
 @Html.DisplayFor(m => faqItem.Answer)
 </div>
 }
</div>

Test the website FAQ functionality

1. Start the AlloyDemo website, and log in as Admin.

Copyright © Episerver AB. All rights reserved.

Exercise F2 – Implementing FAQs with content APIs

Page 174

2. Create an FAQ list page named FAQs under the Start page,

as shown in the screenshot:

3. Publish the page.

4. Switch to Live view to experience the website as a visitor.

5. Navigate to the FAQs page.

6. Enter and submit a question, for example, “Why is the sky

blue?”, and note that the FAQ does NOT appear, as shown

in the following screenshot:

7. Log in as Admin, view the Pages tree, and note the FAQs page

has a child with a pencil icon to indicate that it has a draft that

has not been published yet, as shown in the screenshot:

8. Edit the question, answer it, and publish it.

9. Switch to Live view, and note the question and its answer now appear, as shown in the following

screenshot:

10. Close the browser.

Copyright © Episerver AB. All rights reserved.

Exercise F3 – Listening for events and customizing services with initialization modules

Page 175

Exercise F3 – Listening for events and customizing services with

initialization modules

In this exercise, you will create initialization modules that (1) prevents creating a page if the parent page

already has more than a maximum number of children, and (2) removes the service that suggests most

recent content types.

Prerequisites: complete Exercise A1.

Creating an initialization module to listen for events

1. In ~\Business\Initialization, add an Episerver | Initialization Module named

PreventMoreThanMaxChildrenInitializationModule.cs.

2. Modify the statements, as shown in the following code:

using AlloyDemo.Models.Pages;
using EPiServer;
using EPiServer.Core;
using EPiServer.Framework;
using EPiServer.Framework.Initialization;
using System.Linq;

namespace AlloyDemo.Business.Initialization
{
 [InitializableModule]
 [ModuleDependency(typeof(EPiServer.Web.InitializationModule))]
 public class PreventMoreThanMaxChildrenInitializationModule : IInitializableModule
 {
 private bool initialized = false;
 private IContentEvents events;
 private IContentLoader loader;
 private const int maxChildren = 8;

 public void Initialize(InitializationEngine context)
 {
 if (!initialized)
 {
 loader = context.Locate.ContentLoader();
 events = context.Locate.ContentEvents();
 events.CreatingContent += Events_CreatingContent;
 initialized = true;
 }
 }

 private void Events_CreatingContent(object sender, ContentEventArgs e)
 {
 var sitepage = e.Content as SitePageData;
 if (sitepage != null)
 {
 var children = loader.GetChildren<IContent>(sitepage.ParentLink);
 if (children.Count() >= maxChildren)
 {
 e.CancelAction = true;
 e.CancelReason =
 $"Cannot create a new page if the parent has {maxChildren} or more children.";
 }
 }
 }

 public void Uninitialize(InitializationEngine context)
 {

Copyright © Episerver AB. All rights reserved.

Exercise F3 – Listening for events and customizing services with initialization modules

Page 176

 if (initialized)
 {
 events.CreatingContent -= Events_CreatingContent;
 }
 }
 }
}

3. Start the site, and log in as Admin.

4. Navigate to CMS | Edit.

5. Add a Standard page underneath the Start page named Alpha. You will be able to create the page,

as shown in the following screenshot:

6. Publish the Alpha page.

7. Add a Standard page underneath the Start page named Beta. This time, you will not be able to

create the page, because Start now has eight children, as shown in the following screenshot:

8. Click Cancel.

9. Close the browser.

private const int maxChildren = 100;

Creating an initialization module to remove a service

1. In the previous screenshot, note the Suggested Page Types group. This group is automatically

created based on the most recently used page types.

Copyright © Episerver AB. All rights reserved.

Exercise F3 – Listening for events and customizing services with initialization modules

Page 177

2. In ~\Business\Initialization, add an Episerver | Initialization Module named

RemoveSuggestedPageTypesInitializationModule.cs.

3. Modify the statements, as shown in the following code:

using EPiServer.Cms.Shell.UI.Rest;
using EPiServer.Framework;
using EPiServer.Framework.Initialization;
using EPiServer.ServiceLocation;

namespace AlloyDemo.Business.Initialization
{
 [InitializableModule]
 [ModuleDependency(typeof(EPiServer.Web.InitializationModule))]
 public class RemoveSuggestedPageTypesInitializationModule : IConfigurableModule
 {
 public void ConfigureContainer(ServiceConfigurationContext context)
 {
 context.StructureMap().EjectAllInstancesOf<IContentTypeAdvisor>();
 }

 public void Initialize(InitializationEngine context) { }

 public void Uninitialize(InitializationEngine context) { }
 }
}

4. Start the site, and log in as Admin.

5. Navigate to CMS | Edit.

6. Add a Standard page underneath the Start page, and note the Suggested Page Types group has

gone, as shown in the following screenshot:

Copyright © Episerver AB. All rights reserved.

Exercise F3 – Listening for events and customizing services with initialization modules

Page 178

Install Episerver Developer Tools to monitor initialization modules

1. Navigate to Tools | NuGet Package Manager | Package Manager Console.

2. Enter the following command:

Install-Package -ProjectName AlloyDemo EPiServer.DeveloperTools

3. Start the website, and log in as Admin.

4. Navigate to Developer | Startup Perf, as shown in the following screenshot:

Copyright © Episerver AB. All rights reserved.

Exercise F4 – Implementing scheduled jobs

Page 179

Exercise F4 – Implementing scheduled jobs

In this exercise, you will implement a scheduled job to modify page names, titles, and descriptions that

contain bad words.

Prerequisites: complete Exercise A1.

Create a scheduled job

1. Open the solution that includes the AlloyDemo project.

2. In Solution Explorer, right-click ~/Business, add a folder named ScheduledJobs, and add an

Episerver Scheduled Job named BadWordScannerScheduledJob.

3. Modify its code as shown below:

using AlloyDemo.Models.Pages;
using EPiServer;
using EPiServer.Core;
using EPiServer.PlugIn;
using EPiServer.Scheduler;
using EPiServer.ServiceLocation;

namespace AlloyDemo.Business.ScheduledJobs
{
 [ScheduledPlugIn(DisplayName = "Bad Word Scanner",
 Description = "Scan for bad words in pages and censor them.")]
 public class BadWordScannerScheduledJob : ScheduledJobBase
 {
 private bool _stopSignaled;

 // you could load this from a file or service
 private string[] badWords = new[] { "frak" };

 public BadWordScannerScheduledJob()
 {
 IsStoppable = true;
 }

 public override void Stop()
 {
 _stopSignaled = true;
 }

 public override string Execute()
 {
 OnStatusChanged(string.Format(
 "Starting execution of {0}", this.GetType()));

 var repo = ServiceLocator.Current.GetInstance<IContentRepository>();

 var finder = ServiceLocator.Current
 .GetInstance<IPageCriteriaQueryService>();

 int pageCount = 0;

 foreach (string word in badWords)
 {
 var criteria = new PropertyCriteriaCollection();

 criteria.Add(new PropertyCriteria
 {
 Type = PropertyDataType.LongString,

Copyright © Episerver AB. All rights reserved.

Exercise F4 – Implementing scheduled jobs

Page 180

 Name = "PageName",
 Condition = EPiServer.Filters.CompareCondition.Contained,
 Value = word
 });

 criteria.Add(new PropertyCriteria
 {
 Type = PropertyDataType.LongString,
 Name = "MetaTitle",
 Condition = EPiServer.Filters.CompareCondition.Contained,
 Value = word
 });

 criteria.Add(new PropertyCriteria
 {
 Type = PropertyDataType.LongString,
 Name = "MetaDescription",
 Condition = EPiServer.Filters.CompareCondition.Contained,
 Value = word
 });

 PageDataCollection results = finder.FindPagesWithCriteria(
 ContentReference.RootPage as PageReference, criteria);

 foreach (SitePageData page in results)
 {
 var clone = page.CreateWritableClone() as SitePageData;

 clone.Name = page.Name.Replace(word, "[censored]");
 clone.MetaTitle = page.MetaTitle.Replace(word, "[censored]");
 clone.MetaDescription =
 page.MetaDescription.Replace(word, "[censored]");

 repo.Save(clone,
 EPiServer.DataAccess.SaveAction.CheckIn,
 EPiServer.Security.AccessLevel.NoAccess);

 pageCount++;
 }

 //For long running jobs periodically check if stop is signaled and if
so stop execution
 if (_stopSignaled)
 {
 return "Stop of job was called";
 }
 }

 return $"{pageCount} pages containing one of the following bad words:
'{string.Join("' or '", badWords)}' have been censored.";
 }
 }
}

Testing the scheduled job

1. Start the AlloyDemo site, and log in as Admin.

2. Edit Start, add frak into its Name, and publish the change.

3. Edit About us, add frak into its Title (MetaTitle), and publish the change.

4. Edit Alloy Track, add frak into its Page description (MetaDescription), and publish the change.

Copyright © Episerver AB. All rights reserved.

Exercise F4 – Implementing scheduled jobs

Page 181

5. Navigate to CMS | Admin | Admin | Scheduled Jobs | Bad Word Scanner.

6. Set the job to be active, and set it to run every hour, and change the next schedule date to two

minutes in the future, and click Save, as shown in the following screenshot:

7. Navigate to CMS | Edit, and wait a few minutes for the time you set to pass.

8. Navigate to CMS | Admin | Admin | Scheduled Jobs | Bad Word Scanner.

9. Click History, and note the job ran succesfully and censored three pages, as shown in the following

screenshot:

10. Navigate to CMS | Edit, and note the Start page has been censored and marked as eing ready to

publish, as shown in the following screenshot:

11. Publish the censored change.

12. Check the About us and Alloy Track pages are similiarly censored and ready to publish.

Copyright © Episerver AB. All rights reserved.

Exercise F5 – Implementing soft and hard deletes

Page 182

Exercise F5 – Implementing soft and hard deletes

In this exercise, you will create a page type with template to allow anonymous visitors to enter a content

reference of an item of content to delete.

Prerequisites: complete Exercise A1.

Adding the delete content feature

1. If you haven’t done so already, extract the folders and files in cmsdevfun_exercisefiles.zip.

2. Drag and drop the \cmsdevfun-exercisefiles\Module F\F5\Features\ folder into the AlloyDemo

project.

3. Expand the Features folder and review the files included, as

shown in the following screenshot:

a. DeleteContentPage.cs: a page type class to enable

the feature.

b. DeleteContentPage.cshtml: a Razor file for the user

interface of the feature.

c. DeleteContentPageController.cs: a controller that performs the work of the feature.

4. Open DeleteContentPageController.cs and note the following:

a. The content repository service set using constructor parameter injection. It will be used to

either delete (if hard delete is “on”) or move the content reference to the wastebasket.

b. The Delete action method that responds to HTTP POSTs, with three parameters:

currentPage, contentReference, and hardDelete. If hardDelete is “on” then it uses the

content repository’s Delete() method to permanently delete the content identified with the

contentReference, else it uses the Move() method to move the content to the

Wastebasket. It sets a message in ViewData to tell the visitor what happened.

5. Open DeleteContentPage.cshtml and note the following:

a. If a message is passed using ViewData, it is shown to the visitor.

b. A form that allows a visitor to enter a content reference, select a check box for hard

delete, and click a Delete button.

Test the website delete content functionality

1. Start the AlloyDemo website, and log in as Admin.

2. Navigate to CMS | Admin | Admin | Access Rights | Set Access Rights.

3. In the Set Access Rights content tree, select Recycle Bin.

4. Click Add Users/Groups.

5. Search for Groups, add the CmsAdmins group, and click OK.

Copyright © Episerver AB. All rights reserved.

Exercise F5 – Implementing soft and hard deletes

Page 183

6. Clear all access rights from Administrators, and assign all access rights to CmsAdmins, as shown in

the following screenshot:

7. Click Save.

8. Create and publish a Delete Content page named Deleter under the Start page.

9. Create and publish a Standard page named Alloy Ahoy! under the Start page.

10. Make a note of the ID for Alloy Ahoy!, for example 115, as shown in the following screenshot:

11. Switch to Live view and log out so that you are anonymous.

12. Navigate to the Deleter page.

13. Enter the ID of the Alloy Ahoy! page, click Delete, and note the message, as shown in the following

screenshot:

14. Log in as Admin, and view the Trash, as shown in the following screenshot:

15. Restore the Alloy Ahoy! page.

16. Switch to Live view and log out so that you are anonymous.

17. Navigate to the Deleter page.

Copyright © Episerver AB. All rights reserved.

Exercise F5 – Implementing soft and hard deletes

Page 184

18. Enter the ID of the Alloy Ahoy! page, select the Hard delete check box, click Delete, and note the

message, as shown in the following screenshot:

19. Log in as Admin and confirm that the page is not in the Trash, or the Pages tree, and has been

permanently deleted.

20. Close the browser.

Copyright © Episerver AB. All rights reserved.

Exercise F6 – Learning from Episerver’s assemblies

Page 185

Exercise F6 – Learning from Episerver’s assemblies

In this exercise, you will use ILSpy to decompile and view Episerver assembly code to learn from it.

Prerequisites: complete Exercise A1.

Decompiling Episerver assemblies to understand our APIs

1. Download and install ILSpy from: http://ilspy.net/

2. Choose File | Open, browse to AlloyDemo site’s bin folder, select EPiServer.dll, and click Open, as

shown in the following screenshot:

3. Expand EPiServer (11.n.n.0).

4. Expand EPiServer.Core.

5. Expand PageData.

6. Select PageName, and note that property is decompiled, as shown in the following screenshot:

http://ilspy.net/

Copyright © Episerver AB. All rights reserved.

Exercise F6 – Learning from Episerver’s assemblies

Page 186

7. In the decompiled source code, click this.Name, and note that property is decompiled, as shown in

the following screenshot:

Reviewing Episerver initialization

1. In the left list, collapse EPiServer.Core.

2. Scroll down the tree view, expand EPiServer.Initialization.Internal, expand CmsCoreInitialization,

and click Initialize(InitializationEngine) : void, and note some of the things that Episerver CMS does

when it starts, as shown in the following screenshot:

Copyright © Episerver AB. All rights reserved.

Exercise G1 – Controlling the caching of responses

Page 187

Module G – Optimizing, Securing, and Deploying

Goal

The overall goal of the exercises in this module is to learn how to prepare an Episerver CMS website before

deployment. You will:

1. Control the caching of responses in CDN and browser.

2. Implement logging.

3. Secure the AlloyDemo website.

Exercise G1 – Controlling the caching of responses

In this exercise, you will set cache-control headers and confirm that they were sent in the HTTP response to

be read by a CDN and browser.

Prerequisites: complete Exercise A1.

1. Open the AlloyDemo project.

2. In Visual Studio, ensure that Google Chrome is set as the default browser for running your website.

3. Start the site by pressing Ctrl + F5 or navigate to Debug | Start Without Debugging.

4. In Google Chrome, press F12 to show the developer tools pane.

5. Click the Network tab.

6. Check the Disable cache check box to ensure requests will not be read from the browser’s local

cache, as shown in the following screenshot:

Copyright © Episerver AB. All rights reserved.

Exercise G1 – Controlling the caching of responses

Page 188

7. Press F5 to refresh the site’s Start page. You will see all the HTTP requests recorded in the

developer tools pane, as shown in the following screenshot:

8. Uncheck the Disable cache check box to allow requests to be read from the browser’s local cache.

Copyright © Episerver AB. All rights reserved.

Exercise G1 – Controlling the caching of responses

Page 189

9. Press F5 to make the same request, and note the differences in the developer tools pane, as

shown in the following screenshot:

Viewing the HTTP headers for three types of response

The 15 resources used on the Start page can be divided into three types:

• Dynamically-generated content: localhost

• Static application files: bootstrap.css, style.css, bootstrap-responsive.css, media.css, editmode.css,

jquery.js, bootstrap.js, glyphicons-halflings.png, searchbuttonssmall.png

• Static asset content: logotype.png, alloymeetbanner.png, alloyplan.png, alloymeet.png,

alloytrack.png

By default, each of the three types is treated differently for caching purposes. This is something you will

likely want to configure to optimize for your site.

1. In the list of requests, click the first one, named localhost, and ensure that the Headers tab is

selected. This response is dynamically generated at runtime from an MVC view. Note the Cache-

Control header is set to private, meaning that only the browser could store it in its cache, but CDNs

Copyright © Episerver AB. All rights reserved.

Exercise G1 – Controlling the caching of responses

Page 190

would not cache it, and there is no Expires value after the Date header, so the browser won’t cache

it either, as shown in the following screenshot:

2. In the list of requests, click the one named style.css, and ensure that the Headers tab is selected.

This response is static and loaded from the web server’s file system. Note that the Cache-Control

header is set to max-age=86400, meaning that the browser or any intermediaries like CDNs can

store it for up to one day (the value is in seconds), as shown in the following screenshot:

Common max-age values are:

• One minute: max-age=60

• One hour: max-age=3600

• One day: max-age=86400

• One week: max-age=604800

• One month: max-age=2628000

• One year: max-age=31536000

3. In the list of requests, click the one named alloyplan.png, and ensure that the Headers tab is

selected. Note the Cache-Control header is set to public, meaning that the browser and any

Copyright © Episerver AB. All rights reserved.

Exercise G1 – Controlling the caching of responses

Page 191

intermediaries can store it until it expires. Its Expires header is 12 hours after the Date header, as

shown in the following screenshot:

4. Close the browser.

Controlling caching of dynamically-generated content with code

For total control of how dynamically-generated content is cached, use code.

1. Open ~\Controllers\StartPageController.cs.

2. Modify its Index method to add the following three statements before returning the view:

Response.Cache.SetCacheability(System.Web.HttpCacheability.Public);
Response.Cache.SetExpires(System.DateTime.Now.AddHours(1));
Response.Cache.SetSlidingExpiration(true);

3. Start the site.

4. View the recorded network requests in the developer tools pane. Note that the Cache-Control

header is set to public, meaning that both the browser and CDNs can cache it, and there is an

Expires value set one hour after the Date controlling how long the resource will be cached, as

shown in the following screenshot:

5. Close the browser.

6. To avoid confusion in later exercises, open ~\Controllers\StartPageController.cs, and comment out

the three statements that enabled caching.

Controlling caching of dynamic content with attributes and configuration

A simpler, but less flexible and powerful, alternative to writing code is to use a combination of configuration

and attributes.

1. In the ~\Controllers folder, open DefaultPageController.cs.

Copyright © Episerver AB. All rights reserved.

Exercise G1 – Controlling the caching of responses

Page 192

2. Apply the [ContentOutputCache] attribute before the Index method:

[EPiServer.Web.Mvc.ContentOutputCache]
public ViewResult Index(SitePageData currentPage)

3. Open ~\Web.config.

4. Find the <episerver> section. Inside the <applicationSettings> element, add the attribute

httpCacheExpiration and set its value to a time span of two hours (02:00:00). Note the

httpCacheabillity attribute value is already Public, but this is ignored unless the

[ContentOutputCache] attribute is applied as an action filter. The defaults set in configuration

can be overridden in a [ContentOutputCache] attribute if necessary.

<episerver>
 <applicationSettings
 httpCacheability="Public"
 httpCacheExpiration="02:00:00"
 ...

5. Start the site.

6. View the recorded network requests in the developer tools pane for the About us page and note the

HTTP response headers have been affected, for example, Expires is two hours after Date, and max-

age is 7200 seconds (2 hours), as shown in the following screenshot:

7. Close the browser.

8. To avoid confusion in later exercises, open ~\Controllers\DefaultPageController.cs, and comment

out the [ContentOutputCache] that enabled caching.

Controlling caching of static content

1. Open ~\Web.config.

2. At the top of the file, add the following <section> element inside the <configSections>

element:

<section name="staticFile" allowLocation="true" type=
"EPiServer.Framework.Configuration.StaticFileSection, EPiServer.Framework.AspNet" />

3. Add the following element after the </configSections> element. It will set the expiration to 3

hours of any static media assets managed by the CMS, such as images, videos, and so on.

<staticFile expirationTime="03:00:00" />

Copyright © Episerver AB. All rights reserved.

Exercise G1 – Controlling the caching of responses

Page 193

4. Start the site.

5. Show the developer tools by pressing F12.

6. Check the Disable cache check box, and then press F5 to refresh the previously cached for 12

hours static content.

7. Uncheck the Disable cache check box, and then press F5.

8. View the recorded network requests in the developer tools pane for the alloyplan.png image on the

Start page and note the HTTP response headers have been affected. The difference between the

Date and Expires will now be 3 hours instead of 12 hours, as shown in the following screenshot:

9. Close the browser.

Controlling caching of static application files

1. Find the <system.webServer> element.

2. Inside it, find the <staticContent> element that contains a <clientCache> element with

cacheControlMode set to UseMaxAge and a cacheControlMaxAge set to a time span of 1 day, as

shown in the following configuration:

<staticContent>
 <clientCache cacheControlMode="UseMaxAge" cacheControlMaxAge="1.00:00:00" />

3. Change the number of days to 365. This will set the expiration to one year for any static application

files that are part of your site, such as images, JavaScript files, CSS stylesheets, and so on.

<staticContent>
 <clientCache cacheControlMode="UseMaxAge"
 cacheControlMaxAge="365.00:00:00" />

4. Start the site.

5. Show the developer tools by pressing F12.

6. Check the Disable cache check box, and then press F5 to refresh the previously cached for 1 day

static application files.

7. Uncheck the Disable cache check box, and then press F5.

8. View the recorded network requests in the developer tools pane for the style.css file on the Start

page and check that the HTTP response headers have been affected. The max-age is now

31536000 seconds (one year) instead of 86400 seconds (one day), as shown in the following

screenshot:

Copyright © Episerver AB. All rights reserved.

Exercise G1 – Controlling the caching of responses

Page 194

9. Close the browser.

Bundling, minimization, and cache busting

In the screenshot above, note that the CSS files needed for the page are five separate HTTP requests.

1. Find the <system.web> element.

2. Inside it, find the <compilation> element that contains a debug attribute set to true, as shown in

the following configuration:

<system.web>
 <httpRuntime targetFramework="4.6.1" requestValidationMode="2.0" />
 <compilation debug="true" targetFramework="4.6.1"
 optimizeCompilations="true" />

3. Change the debug attribute to false.

4. Start the site.

5. Show the developer tools by pressing F12.

6. Press F5.

7. View the recorded network requests in the developer tools pane and note the CSS files (and

JavaScript files) have been bundled into single requests, as shown in the following screenshot:

8. Click the JavaScript bundle, js?v=…, and then click the Response tab, and note that as well as

bundling multiple requests for JavaScript together, the files have been minimized, as shown in the

following screenshot:

Copyright © Episerver AB. All rights reserved.

Exercise G1 – Controlling the caching of responses

Page 195

9. Close the browser.

10. Open ~\Business\Initialization\BundleConfig.cs, and note the RegisterBundles method that

determines which static application files are included in the two bundles, as shown in the following

code:

bundles.Add(new ScriptBundle("~/bundles/js").Include(
 "~/Static/js/jquery.js",
 "~/Static/js/bootstrap.js"));

bundles.Add(new StyleBundle("~/bundles/css")
 .Include("~/Static/css/bootstrap.css", new CssRewriteUrlTransform())
 .Include("~/Static/css/bootstrap-responsive.css")
 .Include("~/Static/css/media.css")
 .Include("~/Static/css/style.css", new CssRewriteUrlTransform())
 .Include("~/Static/css/editmode.css"));

Creating a page type and view model for the object cache

You will create a page type with a page template that will show the contents of the Episerver object cache.

1. In ~\Models\Pages, add an Episerver | Page Type named ObjectCachePage.cs.

2. Modify the contents, as shown in the following code:

namespace AlloyDemo.Models.Pages
{
 [SiteContentType(DisplayName = "Object Cache",

 GroupName = Global.GroupNames.Specialized,
 Description = "View the contents of the object cache.")]
 [SiteImageUrl]
 [AvailableContentTypes(IncludeOn = new[] { typeof(StartPage) })]
 public class ObjectCachePage : SitePageData
 {
 }
}

3. In ~\Models\ViewModels, add a class named ObjectCachePageViewModel.cs.

4. Modify the contents, as shown in the following code:

using AlloyDemo.Models.Pages;
using System.Collections;
using System.Collections.Generic;

namespace AlloyDemo.Models.ViewModels
{
 public class ObjectCachePageViewModel
 : PageViewModel<ObjectCachePage>
 {
 public IEnumerable<DictionaryEntry> CachedItems { get; set; }

 public string FilteredBy { get; set; }

 public ObjectCachePageViewModel(
 ObjectCachePage currentPage) : base(currentPage)

Copyright © Episerver AB. All rights reserved.

Exercise G1 – Controlling the caching of responses

Page 196

 {
 }
 }
}

Creating a page template for the object cache

PageControllerBase<T> PageController<T>

1. In ~\Controllers, add an Episerver | Page Controller (MVC) named ObjectCachePageController.cs.

2. Modify the contents, as shown in the following code:

using AlloyDemo.Models.Pages;
using AlloyDemo.Models.ViewModels;
using EPiServer;
using EPiServer.Core;
using EPiServer.Web.Mvc;
using System.Collections;
using System.Linq;
using System.Web.Mvc;

namespace AlloyDemo.Controllers
{
 public class ObjectCachePageController
 : PageControllerBase<ObjectCachePage>
 {
 public ActionResult Index(ObjectCachePage currentPage, string filterBy)
 {
 var viewmodel = new ObjectCachePageViewModel(currentPage);

 var cachedEntries = HttpContext.Cache.Cast<DictionaryEntry>();

 switch (filterBy)
 {
 case "pages":
 viewmodel.CachedItems = cachedEntries
 .Where(item => item.Value is PageData);
 break;
 case "content":
 viewmodel.CachedItems = cachedEntries
 .Where(item => item.Value is IContent);
 break;
 default:
 viewmodel.CachedItems = cachedEntries;
 break;
 }

 viewmodel.FilteredBy = filterBy;

 return View(viewmodel);
 }
 }
}

3. In ~\Views, create a new folder named ObjectCachePage.

4. In ~\Views\ObjectCachePage, create a file named Index.cshtml.

5. Modify its contents, as shown in the following markup:

@using System.Collections
@using EPiServer.Core

Copyright © Episerver AB. All rights reserved.

Exercise G1 – Controlling the caching of responses

Page 197

@using EPiServer.Web.Mvc.Html
@model AlloyDemo.Models.ViewModels.ObjectCachePageViewModel
<div>
 <div class="alert alert-info">Object Cache</div>
 <div class="well well-small">
 @Html.ContentLink("All Cached Objects", Model.CurrentPage.ContentLink, null,
 htmlAttributes: new { @class = string.IsNullOrWhiteSpace(Model.FilteredBy)
? "btn btn-warning" : "btn" })

 @Html.ContentLink("Any Content", Model.CurrentPage.ContentLink,
 routeValues: new { filterBy = "content" },
 htmlAttributes: new { @class = Model.FilteredBy == "content"
 ? "btn btn-warning" : "btn" })

 @Html.ContentLink("Pages Only", Model.CurrentPage.ContentLink,
 routeValues: new { filterBy = "pages" },
 htmlAttributes: new { @class = Model.FilteredBy == "pages"
 ? "btn btn-warning" : "btn" })
 </div>
 <table class="table table-condensed table-bordered table-condensed">
 <tr>
 <th>Key</th>
 <th>Type</th>
 <th>@(string.IsNullOrWhiteSpace(Model.FilteredBy)
 ? "Value" : "Name (ID) Published")</th>
 </tr>
 @foreach (DictionaryEntry item in Model.CachedItems)
 {
 <tr>
 <td>@item.Key</td>
 <td>@item.Value.GetType()</td>
 <td>
 @if (item.Value is IContent)
 {
 @((item.Value as IContent).Name)

 @((item.Value as IContent).ContentLink.ID)
 }
 @if (item.Value is PageData)
 {
 @((item.Value as PageData).StartPublish)
 }
 </td>
 </tr>
 }
 </table>
</div>

Creating an object cache page in the page tree

1. Start the site, and log in as Admin.

2. Underneath the Start page, add an Object Cache page named Cache.

3. Publish the page.

4. View the site as a visitor.

Copyright © Episerver AB. All rights reserved.

Exercise G1 – Controlling the caching of responses

Page 198

5. Click Any Content, as shown in the following screenshot, and note the key values that Episerver

uses for content, for example, the Alloy Track teaser block has a key of EPPageData:55:

Copyright © Episerver AB. All rights reserved.

Exercise G2 – Implementing logging

Page 199

Exercise G2 – Implementing logging

In this exercise, you will implement logging an invalid property setting by using Log4net.

Prerequisites: complete Exercise A1.

Reviewing the default logging configuration

1. Open the Training solution with the AlloyDemo project.

2. Open the ~/EPiServerLog.config file.

3. Note the configuration of the first <appender> element:

• It uses the RollingFileAppender type with a rollingStyle or Date and a pattern of yyyyMMdd so

that each day a new log file will be created with the date as part of the filename.

• The files will be stored in the App_Data folder.

• Each entry will include the date, thread, level, and message.

<appender name="errorFileLogAppender" type="log4net.Appender.RollingFileAppender" >
 <!-- Consider moving the log files to a location outside the web application -->
 <file value="App_Data\EPiServerErrors.log" />
 <encoding value="utf-8" />
 <staticLogFileName value="true"/>
 <datePattern value=".yyyyMMdd.'log'" />
 <rollingStyle value="Date" />
 <threshold value="Error" />
 <lockingModel type="log4net.Appender.FileAppender+MinimalLock" />
 <appendToFile value="true" />
 <layout type="log4net.Layout.PatternLayout">
 <conversionPattern value="%date [%thread] %level %logger: %message%n" />
 </layout>
</appender>

4. Note the enabling of logging at Error level.

<root>
 <!-- setting this value to All, Debug or Info will affect performance.-->
 <level value="Error" />
 <!--Enabled file logging-->
 <appender-ref ref="errorFileLogAppender" />

Writing to the logger

1. Open the ~/Controllers/StartPageController.cs file.

2. Import namespaces for logging, by adding the following statements to the top of the file:

using EPiServer.Core;
using EPiServer.Logging;

3. Inside the class, declare a field to store a reference to the registered ILogger service, as shown in

the following code:

private readonly ILogger logger = LogManager.GetLogger();

4. Inside the Index method, before creating the page view model, add a statement to write to the log

if a search page link has not been set for the StartPage, as shown in the following code:

if (PageReference.IsNullOrEmpty(currentPage.SearchPageLink))
{
 logger.Error("No 'Search page' is specified in 'Site settings'.");
}

Copyright © Episerver AB. All rights reserved.

Exercise G2 – Implementing logging

Page 200

5. In the Solution Explorer, click Show All Files, and then delete the ~/App_Data/EPiServerErrors.log

file to clear any existing logs for today.

Testing the logging

1. Start the site, and log in as Admin.

2. Edit the Start page, and switch to All Properties view.

3. Click the Site settings tab.

4. Clear the Search page property, as shown in the following screenshot:

5. Publish the changes to the Start page.

6. View the Start page as a visitor.

7. Close the browser.

Reviewing the log

1. In Solution Explorer, refresh the ~\App_Data folder, and then open the EPiServerErrors.log file.

2. If the file contains lots of log entries, press Ctrl + F to find, type StartPageController and press

ENTER to find the log entry.

3. Note the log entry, as shown in the following screenshot:

2017-01-05 12:37:45,586 [54] ERROR
AlloyDemo.Controllers.StartPageController: No 'Search page' is specified in
'Site settings'.

Restore the Search page

1. Start the site, and log in as Admin.

2. Edit the Start page, and switch to All Properties view.

Copyright © Episerver AB. All rights reserved.

Exercise G2 – Implementing logging

Page 201

3. Click the Site settings tab.

4. Set the Search page property to the Search page, as shown in the following screenshot:

5. Publish the changes to the Start page.

6. Close the browser.

You’ve now added basic logging to one page type used by the site.

Copyright © Episerver AB. All rights reserved.

Exercise G3 – Securing an Episerver site

Page 202

Exercise G3 – Securing an Episerver site

In this exercise, you will change the Episerver URL path to implement security through obscurity.

Prerequisites: complete Exercise A1.

Reviewing the default Episerver URL path

1. Open the AlloyDemo project.

2. Start the site.

3. In the browser’s address bar, enter: EPiServer/ at the end of the URL, as shown in the following

screenshot:

4. You will be redirected to the log in page, as shown in the following screenshot:

5. Enter a name of Admin and a password of Pa$$w0rd, click Log in, and you will see the Global

menu and Dashboard, as shown in the following screenshot:

6. Close the browser.

You will now modify the site’s configuration to change the URL path.

Copyright © Episerver AB. All rights reserved.

Exercise G3 – Securing an Episerver site

Page 203

Changing the Episerver URL path

1. Open ~/Web.config.

2. Find the <applicationSettings> element, and modify the uiUrl attribute to ~/Secret/CMS, as

shown in the following partial configuration:

<episerver>
 <applicationSettings
 ...
 uiSafeHtmlTags="b,i,u,br,em,strong,p,a,img,ol,ul,li"
 httpCacheability="Public"
 uiEditorCssPaths="~/Static/css/Editor.css"
 uiShowGlobalizationUserInterface="true"
 uiMaxVersions="20"
 uiUrl="~/Secret/CMS/" />

3. Find the <location path="EPiServer"> element, and modify the path attribute to Secret, as

shown in the following configuration:

<location path="Secret">

4. Find the <location path="EPiServer/CMS/admin"> element, and modify the path attribute to

Secret/CMS/Admin, as shown in the following partial configuration:

<location path="Secret/CMS/admin">
 <system.web>
 <authorization>
 <allow roles="WebAdmins, Administrators" />
 <deny users="*" />
 </authorization>
 </system.web>
</location>

5. Use Visual Studio’s Find feature (press Ctrl + F) to search for ~/EPiServer.

6. Modify the two ~/EPiServer entries to ~/Secret, as shown in the following configuration:

<virtualPathProviders>
 <clear />
 <add name="ProtectedModules"
 virtualPath="~/Secret/"
 physicalPath="Modules_Protected"
 type="EPiServer.Web.Hosting.VirtualPathNonUnifiedProvider,
 EPiServer.Framework.AspNet" />

<episerver.shell>
 <publicModules rootPath="~/modules/" autoDiscovery="Modules" />
 <protectedModules rootPath="~/Secret/">

7. Start the site, and log in as Admin.

Copyright © Episerver AB. All rights reserved.

Exercise G3 – Securing an Episerver site

Page 204

8. All the menus in the Global menu should now use Secret as the URL path, as shown in the

following screenshot:

Copyright © Episerver AB. All rights reserved.

Exercise G3 – Securing an Episerver site

Page 205

Summary of Attributes in Episerver

Attributes for Content Types

Name Parameters Description

ContentType

DisplayName
Description
GroupName
Order
GUID
AvailableInEditMode

Controls the registration of a content type in the CMS
database.

Access
Roles
Users
...others

Controls who can create an instance of this type.

ImageUrl Path Sets a 120 x 90 preview icon.

AvailableContentTypes

Availability
Include
IncludeOn
Exclude
ExcludeOn

Controls which content types can be this content
type’s parent and children.

MediaDescriptor
Extensions
ExtensionString

Controls which file extensions are associated with this
media type.

Attributes for Properties

Name Parameters Description

Display

Name
Description
GroupName
Order

Controls the registration of the property in the CMS
database.

AllowedTypes
AllowedTypes
RestrictedTypes
...others

Controls which content types can be referenced by the
property.

CultureSpecific Allows the property to have language branches.

Seachable Includes the property in the search index.

Editable true

Ignore Prevents property from being stored in CMS database.

ScaffoldColumn false Hides the property from Editors.

UIHint
uiHint
presentationLayer

For visitors: selects a DisplayTemplate.
For editors: selects a custom property editor.

SelectOne SelectionFactory Editors can select one value from a drop-down listbox.

SelectMany SelectionFactory Editors can select many values from a list of check boxes.

Required, Range,
StringLength,
RegularExpression,
and other
ValidationAttribute-
derived attributes

...various
Validation rules are applied when saving and publishing
property.

Copyright © Episerver AB. All rights reserved.

Exercise G3 – Securing an Episerver site

Page 206

Attributes for Controllers

Name Parameters Description

TemplateDescriptor

Name
Description
Inherited
Default
Tags, TagString
AvailableWithoutTag
ModelType
Path
TemplateTypeCategory

Controls the registration of a content template in the
CMS database.

ContentOutputCache
Duration (seconds)
Location
...others

Controls how long and where the response is cached.

Can also be applied to action method(s).

Attributes for Groups and Tabs

Name Parameters Description

GroupDefinitions n/a Apply to a static class with string constants to define Tabs in code.

Display
Name
Order

Controls the registration of the tab names in the CMS database.

RequiredAccess AccessLevel
Controls what access rights an Editor must have to see a tab and
its properties.

Attributes for Initialization Modules

Name Parameters Description

InitializableModule UninitializeOnShutdown

Apply to a class to register it as an initialization
module. It must implement
IInitializableModule or
IConfigurableModule.

ModuleDependency One or more types.
Controls the order in which initialization modules
execute by defining dependencies.

Copyright © Episerver AB. All rights reserved.

Exercise G3 – Securing an Episerver site

Page 207

Attributes for Extensions

Name Parameters Description

EditorDescriptorRegistration
TargetType
UIHint
EditorDescriptorBehavior

Registers a class as a custom editor for a
data type.

UIDescriptorRegistration n/a
Registers a class to customize UI
elements for a content type.

Component

Title
Description
PlugInAreas
SortOrder
AllowedRoles
Categories

Registers a class as a gadget for an Editor
or Admin to add to their Dashboard or Edit
view Navigation and Assets panes.

GuiPlugIn

Area
Category
SortIndex
DisplayName
Description
DefaultEnabled
RequiredAccess

Registers a class as a plug-in.
Category is only used by Visitor Group
Criteria

ScheduledPlugIn

DisplayName
Description
InitialTime
IntervalLength
IntervalType
Restartable
SortIndex
GUID

Registers a class as a scheduled job. It
can optionally inherit from
ScheduleJobBase or have a static method
named Execute that returns a string.

